Displaying all 3 publications

Abstract:
Sort:
  1. Shimizu S, Broad GR, Maeto K
    Zookeys, 2020;990:1-144.
    PMID: 33269011 DOI: 10.3897/zookeys.990.55542
    The predominantly tropical ophionine genus Enicospilus Stephens, 1835 is one of the largest genera of Darwin wasps (Hymenoptera, Ichneumonidae), with more than 700 extant species worldwide that are usually crepuscular or nocturnal and are parasitoids of Lepidoptera larvae. In the present study, the Japanese species of Enicospilus are revised using an integrative approach (combined morphology and DNA barcoding). On the basis of 3,110 specimens, 47 Enicospilus species are recognised in Japan, eight of which are new species (E. acutus Shimizu, sp. nov., E. kunigamiensis Shimizu, sp. nov., E. limnophilus Shimizu, sp. nov., E. matsumurai Shimizu, sp. nov., E. pseudopuncticulatus Shimizu, sp. nov., E. sharkeyi Shimizu, sp. nov., E. takakuwai Shimizu, sp. nov., and E. unctus Shimizu, sp. nov.), seven are new records from Japan (E. jilinensis Tang, 1990, E. laqueatus (Enderlein, 1921), E. multidens Chiu, 1954, stat. rev., E. puncticulatus Tang, 1990, E. stenophleps Cushman, 1937, E. vestigator (Smith, 1858), and E. zeugos Chiu, 1954, stat. rev.), 32 had already been recorded in Japan; three (E. biharensis Townes, Townes & Gupta, 1961, E. flavicaput (Morley, 1912), and E. merdarius (Gravenhorst, 1829)) have been erroneously recorded from Japan based on misidentifications, and four names that were previously on the Japanese list are deleted through synonymy. The following taxonomic changes are proposed: E. vacuus Gauld & Mitchell, 1981, syn. nov. (= E. formosensis (Uchida, 1928)); E. multidensstat. rev.; E. striatus Cameron, 1899, syn. nov. = E. lineolatus (Roman, 1913), syn. nov. = E. uniformis Chiu, 1954, syn. nov. = E. flatus Chiu, 1954, syn. nov. = E. gussakovskii Viktorov, 1957, syn. nov. = E. striolatus Townes, Townes & Gupta, 1961, syn. nov. = E. unicornis Rao & Nikam, 1969, syn. nov. = E. unicornis Rao & Nikam, 1970, syn. nov. (= E. pungens (Smith, 1874)); E. iracundus Chiu, 1954, syn. nov. (= E. sakaguchii (Matsumura & Uchida, 1926)); E. sigmatoides Chiu, 1954, syn. nov. (= E. shikokuensis (Uchida, 1928)); E. yamanakai (Uchida, 1930), syn. nov. (= E. shinkanus (Uchida, 1928)); E. ranunculus Chiu, 1954, syn. nov. (= E. yezoensis (Uchida, 1928)); and E. zeugosstat. rev. = E. henrytownesi Chao & Tang, 1991, syn. nov. In addition, the following new regional and country records are also provided: E. flavocephalus (Kirby, 1900), E. puncticulatus, and E. vestigator from the Eastern Palaearctic region, E. laqueatus from the Eastern Palaearctic and Oceanic regions, and E. maruyamanus (Uchida, 1928) from the Oriental region; E. abdominalis (Szépligeti, 1906) from Nepal, E. flavocephalus from Laos, E. formosensis from Laos and Malaysia, E. insinuator (Smith, 1860) from Taiwan, E. maruyamanus from India and Philippines, E. nigronotatus Cameron, 1903, E. riukiuensis (Matsumura & Uchida, 1926), and E. sakaguchii from Indonesia, E. pungens from 14 countries (Australia, Bhutan, Brunei, Indonesia, Laos, Malaysia, Nepal, New Caledonia, Papua New Guinea, Philippines, Solomon Islands, Sri Lanka, Tajikistan, and Taiwan), and E. yezoensis from South Korea. An identification key to all Japanese species of Enicospilus is proposed. Although 47 species are recognised in the present study, approximately 55 species could potentially be found in Japan based on ACE and Chao 1 estimators. The latitudinal diversity gradient of Enicospilus species richness is also tested in the Japanese archipelago based on the constructed robust taxonomic framework and extensive samples. Enicospilus species richness significantly increases towards the south, contrary to the 'anomalous' pattern of some other ichneumonid subfamilies.
  2. Hudson LN, Newbold T, Contu S, Hill SL, Lysenko I, De Palma A, et al.
    Ecol Evol, 2014 Dec;4(24):4701-35.
    PMID: 25558364 DOI: 10.1002/ece3.1303
    Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species' threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project - and avert - future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups - including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems - http://www.predicts.org.uk). We make site-level summary data available alongside this article. The full database will be publicly available in 2015.
  3. Hudson LN, Newbold T, Contu S, Hill SL, Lysenko I, De Palma A, et al.
    Ecol Evol, 2017 Jan;7(1):145-188.
    PMID: 28070282 DOI: 10.1002/ece3.2579
    The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links