A series of novel carbonyl compounds was synthesized by a simple, eco-friendly and efficient method. These compounds were screened for anti-oxidant activity, in vitro cytotoxicity and for inhibitory activity for acetylcholinesterase and butyrylcholinesterase. The effect of these compounds against amyloid β-induced cytotoxicity was also investigated. Among them, compound 14 exhibited strong free radical scavenging activity (18.39 μM) while six compounds (1, 3, 4, 13, 14, and 19) were found to be the most protective against Aβ-induced neuronal cell death in PC12 cells. Compounds 4 and 14, containing N-methyl-4-piperidone linker, showed high acetylcholinesterase inhibitory activity as compared to reference drug donepezil. Molecular docking and QSAR (Quantitative Structure-Activity Relationship) studies were also carried out to determine the structural features that are responsible for the acetylcholinesterase and butyrylcholinesterase inhibitory activity.
Multiple separate quantitative structure-activity relationships (QSARs) models were built for the antiproliferative activity of substituted Phenyl 4-(2-Oxoimidazolidin-1-yl)-benzenesulfonates (PIB-SOs). A variety of descriptors were considered for PIB-SOs through QSAR model building. Genetic algorithm (GA), available in QSARINS, was employed to select optimum number and set of descriptors to build the multi-linear regression equations for a dataset of PIB-SOs. The best three parametric models were subjected to thorough internal and external validation along with Y-randomization using QSARINS, according to the OECD principles for QSAR model validation. The models were found to be statistically robust with high external predictivity. The best three parametric model, based on steric, 3D- and finger print descriptors, was found to have R(2)=0.91, R(2)ex=0.89, and CCCex=0.94. The CoMFA model, which is based on a combination of steric and electrostatic effects and graphically inferred using contour plots, gave F=229.34, R(2)CV=0.71 and R(2)=0.94. Steric repulsion, frequency of occurrence of carbon and nitrogen at topological distance of seven, and internal electronic environment of the molecule were found to have correlation with the anti-tumor activity of PIB-SOs.