Displaying all 2 publications

Abstract:
Sort:
  1. Raghavendra U, Gudigar A, Maithri M, Gertych A, Meiburger KM, Yeong CH, et al.
    Comput Biol Med, 2018 04 01;95:55-62.
    PMID: 29455080 DOI: 10.1016/j.compbiomed.2018.02.002
    Ultrasound imaging is one of the most common visualizing tools used by radiologists to identify the location of thyroid nodules. However, visual assessment of nodules is difficult and often affected by inter- and intra-observer variabilities. Thus, a computer-aided diagnosis (CAD) system can be helpful to cross-verify the severity of nodules. This paper proposes a new CAD system to characterize thyroid nodules using optimized multi-level elongated quinary patterns. In this study, higher order spectral (HOS) entropy features extracted from these patterns appropriately distinguished benign and malignant nodules under particle swarm optimization (PSO) and support vector machine (SVM) frameworks. Our CAD algorithm achieved a maximum accuracy of 97.71% and 97.01% in private and public datasets respectively. The evaluation of this CAD system on both private and public datasets confirmed its effectiveness as a secondary tool in assisting radiological findings.
  2. Gudigar A, Kadri NA, Raghavendra U, Samanth J, Maithri M, Inamdar MA, et al.
    Comput Biol Med, 2024 Apr;172:108207.
    PMID: 38489986 DOI: 10.1016/j.compbiomed.2024.108207
    Artificial Intelligence (AI) techniques are increasingly used in computer-aided diagnostic tools in medicine. These techniques can also help to identify Hypertension (HTN) in its early stage, as it is a global health issue. Automated HTN detection uses socio-demographic, clinical data, and physiological signals. Additionally, signs of secondary HTN can also be identified using various imaging modalities. This systematic review examines related work on automated HTN detection. We identify datasets, techniques, and classifiers used to develop AI models from clinical data, physiological signals, and fused data (a combination of both). Image-based models for assessing secondary HTN are also reviewed. The majority of the studies have primarily utilized single-modality approaches, such as biological signals (e.g., electrocardiography, photoplethysmography), and medical imaging (e.g., magnetic resonance angiography, ultrasound). Surprisingly, only a small portion of the studies (22 out of 122) utilized a multi-modal fusion approach combining data from different sources. Even fewer investigated integrating clinical data, physiological signals, and medical imaging to understand the intricate relationships between these factors. Future research directions are discussed that could build better healthcare systems for early HTN detection through more integrated modeling of multi-modal data sources.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links