Displaying all 13 publications

Abstract:
Sort:
  1. Sathasivam KV, Haris MRHM, Fuloria S, Fuloria NK, Malviya R, Subramaniyan V
    Polymers (Basel), 2021 Jun 11;13(12).
    PMID: 34208069 DOI: 10.3390/polym13121943
    Natural fibers have proven to be excellent reinforcing agents in composite materials. However, a critical disadvantage of natural fibers is their hydrophilic nature. In this study, banana trunk fibers were mechanically damaged using a high-speed blender, and the resulting fibers (MDBTF) were treated with (i) stearic acid (SAMDBTF) and (ii) calcium carbonate coated with 5% (wt/wt) stearic acid (SACCMDBTF). The moisture sorption, oil sorption and thermal properties of the fibers were determined. The morphology, roughness and the functional groups present were also investigated. Study data of the present study indicate that SACCMDBTF exhibited a faster oil sorption capacity than SAMDBTF. Fast uptake of the oil occurred during the first 5 min, whereby the quantity of oil sorbed in SAMDBTF and SACCMDBTF was 5.5 and 15.0 g oil g-1 fiber, respectively. The results of a used engine oil uptake study revealed that SAMDBTF and SACCMDBTF sorbed 9.5 and 18.3 g/g-1 fiber, respectively, at equilibrium. The obtained results suggest that the mechanically damaged process improved the thermal stability of the fibers. This work reveals that the inclusion of stearic-acid-coated calcium carbonate into the interstices of MDBTF yields is environmentally safe for green hydrophobic composites. SACCMDBTF are used as efficient adsorbents for the removal of spilled oil on aqueous media.
  2. Anwar ET, Gupta N, Porwal O, Sharma A, Malviya R, Singh A, et al.
    PMID: 34579638 DOI: 10.2174/1871526521666210927120334
    BACKGROUND: In the rural areas of sub-Saharan African regions, skin diseases are so common. Due to which the population of the sub-Saharan region suffers from different types of skin disorders. In these regions, many treatment options are not available for the treatment of skin disease.

    AIM: The current study aims to discuss various skin diseases and their treatment strategies specifically in sub-Saharan African regions.

    METHOD: Extensive literature survey was carried out by using scopus, science direct, elsevier, google scholar and bentham science databases.

    RESULT AND DISCUSSION: It was demonstrated from the literature surveys that different effective techniques are used in the management of skin disease. In the result, it was shown that the condition of the disease is at a dangerous level which must be controlled.

    CONCLUSION: It is concluded from the manuscript that the skin disorder in the sub-Saharan region is at a very dangerous level. The research must be done to develop a better understanding of the disease and its treatment.

  3. Sharma A, Sundaram S, Malviya R, Verma S, Fuloria NK, Fuloria S, et al.
    Infect Disord Drug Targets, 2023;23(3):e190922208916.
    PMID: 36121085 DOI: 10.2174/1871526522666220919105643
    The perspective of the people of Sub-Saharan Africa (SSA) toward both traditional and western healthcare systems varies. The goal of the current study is to examine the SSA's unique skin disease health care system. This study comprises numerous research that sought to examine how the general public feels about the SSA's current healthcare system. In this review, common skin conditions, such as atopic dermatitis, buruli ulcers, dermatophytosis, and scabies, are addressed. According to this report, government agencies must pay particular attention to skin illnesses in SSA and raise public awareness. Availability of medical care, socioeconomic factors, degree of education, and other factors influence patients' attitudes toward traditional and western health care differently in different geographic areas. Facts suggest that self-medication is the preference of the majority of patients before seeking dermatological care. The present study concludes that the magnitude of skin diseases is neglected or underestimated in many regions of SSA. Also, western healthcare facilities of many regions of SSA are not up to the mark. The present study recommends that proper access to the health care system and awareness about skin diseases through various government programs can be helpful in the regulation of skin disorders among people of SSA.
  4. Verma S, Malviya R, Srivastava S, Ahmad I, Singh B, Almontasheri R, et al.
    Curr Pharm Des, 2024 Jul 18.
    PMID: 39034725 DOI: 10.2174/0113816128314618240628110218
    Drug delivery systems rely heavily on nanoparticles because they provide a targeted and monitored release of pharmaceuticals that maximize therapeutic efficacy and minimize side effects. To maximize drug internalization, this review focuses on comprehending the interactions between biological systems and nanoparticles. The way that nanoparticles behave during cellular uptake, distribution, and retention in the body is determined by their shape. Different forms, such as mesoporous silica nanoparticles, micelles, and nanorods, each have special properties that influence how well drugs are delivered to cells and internalized. To achieve the desired particle morphology, shape-controlled nanoparticle synthesis strategies take into account variables like pH, temperatures, and reaction time. Top-down techniques entail dissolving bulk materials to produce nanoparticles, whereas bottom-up techniques enable nanostructures to self-assemble. Comprehending the interactions at the bio-nano interface is essential to surmounting biological barriers and enhancing the therapeutic efficacy of nanotechnology in drug delivery systems. In general, drug internalization and distribution are greatly influenced by the shape of nanoparticles, which presents an opportunity for tailored and efficient treatment plans in a range of medical applications.
  5. Rajput S, Malviya R, Srivastava S, Ahmad I, Obaidur Rab S, Uniyal P
    Ann Pharm Fr, 2024 Aug 17.
    PMID: 39159826 DOI: 10.1016/j.pharma.2024.08.005
    The coagulation and immune system, both essential physiological systems in the human body, are intricately interconnected and play a critical role in determining the overall health of patients. These systems collaborate via various shared regulatory pathways, such as the Tissue Factor (TF) Pathway. Immunological cells that express TF and generate pro-inflammatory cytokines have the ability to affect coagulation. Conversely, coagulation factors and processes have a reciprocal effect on immunological responses by stimulating immune cells and regulating their functions. These interconnected pathways play a role in both preserving well-being and contributing to a range of pathological disorders. The close relationship between blood clotting and inflammation in the development of vascular disease has become a central focus of clinical study. This research specifically examines the crucial elements of this interaction within the contexts of cardiovascular disease and acute coronary syndrome. Tissue factor, the primary trigger of the extrinsic coagulation pathway, has a crucial function by inducing a proinflammatory reaction through the activation of coagulation factors. This, in turn, initiates coagulation and subsequent cellular signalling pathways. Protease-activated receptors establish the molecular connection between coagulation and inflammation by interacting with activated clotting factors II, X, and VII. Thrombosis, a condition characterised by the formation of blood clots, is the most dreaded consequence of cardiovascular disorders and a leading cause of death globally. Consequently, it poses a significant challenge to healthcare systems. Antithrombotic treatments efficiently target platelets and the coagulation cascade, but they come with the inherent danger of causing bleeding. Furthermore, antithrombotics are unable to fully eliminate thrombotic events, highlighting a treatment deficiency caused by a third mechanism that has not yet been sufficiently addressed, namely inflammation. Understanding these connections may aid in the development of novel approaches to mitigate the harmful mutual exacerbation of inflammation and coagulation. Gaining a comprehensive understanding of the intricate interaction among these systems is crucial for the management of diseases and the creation of efficacious remedies. Through the examination of these prevalent regulatory systems, we can discover novel therapeutic approaches that specifically target these complex illnesses. This paper provides a thorough examination of the reciprocal relationship between the coagulation and immune systems, emphasising its importance in maintaining health and understanding disease processes. This review examines the interplay between inflammation and thrombosis and its role in the development of thrombotic disorders.
  6. Gupta B, Malviya R, Srivastava S, Ahmad I, Rab SO, Singh DP
    Curr Pharm Des, 2024 Aug 16.
    PMID: 39161144 DOI: 10.2174/0113816128322300240725052530
    Cancer is the leading cause of mortality worldwide, requiring continuous advancements in diagnosis and treatment. Traditional methods often lack sensitivity and specificity, leading to the need for new methods. 3D printing has emerged as a transformative tool in cancer diagnosis, offering the potential for precise and customizable nanosensors. These advancements are critical in cancer research, aiming to improve early detection and monitoring of tumors. In current times, the usage of the 3D printing technique has been more prevalent as a flexible medium for the production of accurate and adaptable nanosensors characterized by exceptional sensitivity and specificity. The study aims to enhance early cancer diagnosis and prognosis by developing advanced 3D-printed nanosensors using 3D printing technology. The research explores various 3D printing techniques, design strategies, and functionalization strategies for cancer-specific biomarkers. The integration of these nanosensors with detection modalities like fluorescence, electrochemical, and surface-enhanced Raman spectroscopy is also evaluated. The study explores the use of inkjet printing, stereolithography, and fused deposition modeling to create nanostructures with enhanced performance. It also discusses the design and functionalization methods for targeting cancer indicators. The integration of 3D-printed nanosensors with multiple detection modalities, including fluorescence, electrochemical, and surface-enhanced Raman spectroscopy, enables rapid and reliable cancer diagnosis. The results show improved sensitivity and specificity for cancer biomarkers, enabling early detection of tumor indicators and circulating cells. The study highlights the potential of 3D-printed nanosensors to transform cancer diagnosis by enabling highly sensitive and specific detection of tumor biomarkers. It signifies a pivotal step forward in cancer diagnostics, showcasing the capacity of 3D printing technology to produce advanced nanosensors that can significantly improve early cancer detection and patient outcomes.
  7. Malviya R, Jha S, Fuloria NK, Subramaniyan V, Chakravarthi S, Sathasivam K, et al.
    Polymers (Basel), 2021 Feb 18;13(4).
    PMID: 33670569 DOI: 10.3390/polym13040610
    The rheological properties of tamarind seed polymer are characterized for its possible commercialization in the food and pharmaceutical industry. Seed polymer was extracted using water as a solvent and ethyl alcohol as a precipitating agent. The temperature's effect on the rheological behavior of the polymeric solution was studied. In addition to this, the temperature coefficient, viscosity, surface tension, activation energy, Gibbs free energy, Reynolds number, and entropy of fusion were calculated by using the Arrhenius, Gibbs-Helmholtz, Frenkel-Eyring, and Eotvos equations, respectively. The activation energy of the gum was found to be 20.46 ± 1.06 kJ/mol. Changes in entropy and enthalpy were found to be 23.66 ± 0.97 and -0.10 ± 0.01 kJ/mol, respectively. The calculated amount of entropy of fusion was found to be 0.88 kJ/mol. A considerable decrease in apparent viscosity and surface tension was produced when the temperature was raised. The present study concludes that the tamarind seed polymer solution is less sensitive to temperature change in comparison to Albzia lebbac gum, Ficus glumosa gum and A. marcocarpa gum. This study also concludes that the attainment of the transition state of viscous flow for tamarind seed gum is accompanied by bond breaking. The excellent physicochemical properties of tamarind seed polymers make them promising excipients for future drug formulation and make their application in the food and cosmetics industry possible.
  8. Fuloria S, Subramaniyan V, Dahiya R, Dahiya S, Sudhakar K, Kumari U, et al.
    Biology (Basel), 2021 Feb 25;10(3).
    PMID: 33668707 DOI: 10.3390/biology10030172
    Evidence suggests that stem cells exert regenerative potential via the release of extracellular vesicles. Mesenchymal stem cell extracellular vesicles (MSCEVs) offer therapeutic benefits for various pathophysiological ailments by restoring tissues. Facts suggest that MSCEV action can be potentiated by modifying the mesenchymal stem cells culturing methodology and bioengineering EVs. Limited clinical trials of MSCEVs have questioned their superiority, culturing quality, production scale-up and isolation, and administration format. Translation of preclinically successful MSCEVs into a clinical platform requires paying attention to several critical matters, such as the production technique, quantification/characterization, pharmacokinetics/targeting/transfer to the target site, and the safety profile. Keeping these issues as a priority, the present review was designed to highlight the challenges in translating preclinical MSCEV research into clinical platforms and provide evidence for the regenerative potential of MSCEVs in various conditions of the liver, kidney, heart, nervous system, bone, muscle, cartilage, and other organs/tissues.
  9. Malviya R, Tyagi A, Fuloria S, Subramaniyan V, Sathasivam K, Sundram S, et al.
    Polymers (Basel), 2021 May 10;13(9).
    PMID: 34068768 DOI: 10.3390/polym13091531
    Transdermal drug delivery is used to deliver a drug by eliminating the first-pass metabolism, which increases the bioavailability of the drug. The present study aims to formulate the chitosan-tamarind seed polysaccharide composite films and evaluate for the delivery of protein/peptide molecules. Nine formulations were prepared and evaluated by using different parameters, such as physical appearance, folding endurance, thickness of film, surface pH, weight variation, drug content, surface morphology, percentage moisture intake and uptake, drug release kinetics, and drug permeability. The film weight variance was observed between 0.34 ± 0.002 to 0.47 ± 0.003 g. The drug level of the prepared films was found to be between 96 ± 1.21 and 98 ± 1.33μg. Their intake of moisture ranged between 2.83 ± 0.002 and 3.76 ± 0.001 (%). The moisture absorption of the films ranged from 5.33 ± 0.22 to 10.02 ± 0.61 (%). SEM images revealed a smooth film surface, while minor cracks were found in the film after permeation tests. During the first 4 days, drug release was between 13.75 ± 1.64% and 22.54 ± 1.34% and from day 5 to day 6, it was between 72.67 ± 2.13% and 78.33 ± 3.13%. Drug permeation during the first 4 days was 15.78 ± 1.23 %. Drug permeation (%) during the first 4 days was between 15.78 ± 1.23 and 22.49 ± 1.29 and from day 5 to day 6, it was between 71.49 ± 3.21 and 77.93 ± 3.20.
  10. Malviya R, Sundram S, Fuloria S, Subramaniyan V, Sathasivam KV, Azad AK, et al.
    Polymers (Basel), 2021 Sep 07;13(18).
    PMID: 34577925 DOI: 10.3390/polym13183023
    Polymers from natural sources are widely used as excipients in the formulation of pharmaceutical dosage forms. The objective of this study was to extract and further characterize the tamarind gum polysaccharide (TGP) obtained from Tamarindus indica as an excipient for biomedical applications. Double distilled water was used as a solvent for the extraction of gum while Ethyl alcohol was used as an antisolvent for the precipitation. The results of the Hausner ratio, Carr's index and angle of repose were found to be 0.94, 6.25, and 0.14, respectively, which revealed that the powder is free-flowing with good flowability. The gum was investigated for purity by carrying out chemical tests for different phytochemical constituents and only carbohydrates were found to be present. The swelling index was found to be 87 ± 1%, which shows that TGP has good water intake capacity. The pH of the 1% gum solution was found to be neutral, approximately 6.70 ± 0.01. The ash values such as total ash, sulphated ash, acid insoluble ash, and water-soluble ash were found to be 14.00 ± 1.00%, 13.00 ± 0.05%, 14.04 ± 0.57% and 7.29 ± 0.06%, respectively. The IR spectra confirmed the presence of alcohol, amines, ketones, anhydrides groups. The contact angle was <90°, indicating favorable wetting and good spreading of liquid over the surface The scanning electron micrograph (SEM) revealed that the particle is spherical in shape and irregular. DSC analysis shows a sharp exothermic peak at 350 °C that shows its crystalline nature. The results of the evaluated properties showed that TGP has acceptable properties and can be used as a excipient to formulate dosage forms for biomedical applications.
  11. Khan TA, Azad AK, Fuloria S, Nawaz A, Subramaniyan V, Akhlaq M, et al.
    Polymers (Basel), 2021 Sep 29;13(19).
    PMID: 34641162 DOI: 10.3390/polym13193345
    The purpose of the present study was to develop emulsions encapsulated by chitosan on the outer surface of a nano droplet containing 5-fluorouracil (5-FU) as a model drug. The emulsions were characterized in terms of size, pH and viscosity and were evaluated for their physicochemical properties such as drug release and skin permeation in vitro. The emulsions containing tween 80 (T80), sodium lauryl sulfate, span 20, and a combination of polyethylene glycol (PEG) and T20 exhibited a release of 88%, 86%, 90% and 92%, respectively. Chitosan-modified emulsions considerably controlled the release of 5-FU compared to a 5-FU solution (p < 0.05). All the formulations enabled transportation of 5-FU through a rat's skin. The combination (T80, PEG) formulation showed a good penetration profile. Different surfactants showed variable degrees of skin drug retention. The ATR-FTIR spectrograms revealed that the emulsions mainly affected the fluidization of lipids and proteins of the stratum corneum (SC) that lead to enhanced drug permeation and retention across the skin. The present study concludes that the emulsions containing a combination of surfactants (Tween) and a co-surfactant (PEG) exhibited the best penetration profile, prevented the premature release of drugs from the nano droplet, enhanced the permeation and the retention of the drug across the skin and had great potential for transdermal drug delivery. Therefore, chitosan-coated 5-FU emulsions represent an excellent possibility to deliver a model drug as a transdermal delivery system.
  12. Malviya R, Fuloria S, Verma S, Subramaniyan V, Sathasivam KV, Kumarasamy V, et al.
    PeerJ, 2021;9:e12392.
    PMID: 34820175 DOI: 10.7717/peerj.12392
    The present review aims to describe the commercial utilities and future perspectives of nanomedicines. Nanomedicines are intended to increase precision medicine and decrease the adverse effects on the patient. Nanomedicines are produced, engineered, and industrialized at the cellular, chemical, and macromolecular levels. This study describes the various aspects of nanomedicine such as governing outlooks over high use of nanomedicine, regulatory advancements for nanomedicines, standards, and guidelines for nanomedicines as per Therapeutic Goods Administration (TGA). This review also focuses on the patents and clinical trials based on nanoformulation, along with nanomedicines utilization as drug therapy and their market value. The present study concludes that nanomedicines are of high importance in biomedical and pharmaceutical production and offer better therapeutic effects especially in the case of drugs that possess low aqueous solubility. The factual data presented in this study will assist the researchers and health care professionals in understanding the applications of nanomedicine for better diagnosis and effective treatment of a disease.
  13. Malviya R, Raj S, Fuloria S, Subramaniyan V, Sathasivam K, Kumari U, et al.
    Int J Nanomedicine, 2021;16:2533-2553.
    PMID: 33824590 DOI: 10.2147/IJN.S300991
    PURPOSE: The present study was intended to fabricate chitosan (Ch)-tamarind gum polysaccharide (TGP) polyelectrolyte complex stabilized cubic nanoparticles of simvastatin and evaluate their potential against human breast cancer cell lines.

    MATERIALS AND METHODS: The antisolvent precipitation method was used for formulation of nanoparticles. Factorial design (32) was utilized as a tool to analyze the effect of Ch and TGP concentration on particle size and entrapment efficiency of nanoparticles.

    RESULTS: Formulated nanoparticles showed high entrapment efficiency (67.19±0.42-83.36±0.23%) and small size (53.3-383.1 nm). The present investigation involved utilization of two biological membranes (egg and tomato) as biological barriers for drug release. The study revealed that drug release from tomato membranes was retarded (as compared to egg membranes) but the release pattern matched that of egg membranes. All formulations followed the Baker-Lansdale model of drug release irrespective of the two different biological barriers. Stability studies were carried out for 45 days and exhibited less variation in particle size as well as a reduction in entrapment efficiency. Simvastatin loaded PEC stabilized nanoparticles exhibited better control on growth of human breast cancer cell lines than simple simvastatin. An unusual anticancer effect of simvastatin nanoparticles is also supported by several other research studies.

    CONCLUSION: The present study involves first-time synthesis of Ch-TGP polyelectrolyte complex stabilized nanoparticles of simvastatin against MCF-7 cells. It recommends that, in future, theoretical modeling and IVIVC should be carried out for perfect designing of delivery systems.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links