Rotavirus is the leading causative viral agent of pediatric acute gastroenteritis globally, infecting mostly children 5 years old and below. Data on rotavirus prevalence in Malaysia is scarce, despite the WHO's recommendation for continuous rotavirus surveillance, and has underestimated the need for national rotavirus vaccination. Characteristics of the current rotavirus strains in Malaysia have to be determined to understand the rotavirus epidemiology and vaccine compatibility. This study sought to determine the genetic relatedness of Sarawak rotavirus strains with global strains and to determine the antigenic coverage and epitope compatibility of Rotarix and RotaTeq vaccines with the Sarawak rotavirus strains via in silico analysis. A total of 89 stool samples were collected from pediatric patients (<5 years old) with acute gastroenteritis at private hospitals in Kuching, Sarawak. Rotavirus was detected using reverse transcription-polymerase chain reaction. Positive amplicons were analyzed using nucleotide sequencing before phylogenetic analyses and assessment of epitope compatibility. Genotyping revealed G1P[8] (1/13; 7.7%), G3P[8] (3/13; 23%), G9P[4] (1/13; 7.7%), and G9P[8] (3/13; 23%), G9P[X] (1/13; 7.7%), GXP[4] (1/13; 7.7%), and GXP[8] (3/13; 23%) in samples. All wild-type Sarawak rotavirus strains, with the exception of G1, showed variations in their phylogenetic and antigenic epitope characteristics.
Several vaccines have been fast-tracked through clinical trials to mitigate the progression of the SARS‑CoV‑2 pandemic. We analyzed sequential blood samples from 314 recipients of Comirnaty and CoronaVac in East Malaysia for the spike-binding IgG (IgG-S), nucleocapsid-binding IgG (IgG-N), spike-binding IgM (IgM-S) and serum vitamin D (VitD). A subset of samples was analyzed for the neutralizing antibodies (Ig-RBD). Results showed that IgG-S due to Comirnaty was significantly higher than CoronaVac. IgM-S was detected in 80.0% Comirnaty and 69.5% CoronaVac recipients, while IgG-N was detected in 58.1% CoronaVac but not in Comirnaty recipients. All IgG-S-positive vaccines possessed detectable Ig-RBD after the second dose but with a weak to moderate correlation. The serum VitD levels did not influence the antibody magnitude in both vaccines. In essence, SARS-CoV-2 vaccination is an IgG-S-dominant event, Comirnaty was more effective than CoronaVac in mounting IgG-S and Ig-RBD responses, independent of the patient's VitD level.