Displaying all 2 publications

Abstract:
Sort:
  1. Mohidem NA, Mat HB
    Bioresour Technol, 2012 Jun;114:472-7.
    PMID: 22464060 DOI: 10.1016/j.biortech.2012.02.138
    The catalytic activity of free laccase and a novel sol-gel laccase (SOLAC) in ionic liquids and organic solvents was demonstrated by using 2,6-dimethoxyphenol (2,6-DMP) as a substrate. The enhancement of the catalytic activity of the SOLAC was observed and compared to the free laccase in both media. The oxidative biodegradation of o-chlorophenol as a model of phenolic environmental pollutants in organic media shows that the degradation was observed only when using water pre-saturated organic solvents or reverse micelle system. The SOLAC gave higher biodegradation rate in either aqueous or organic solvents, in which the optimum temperature was observed at 40 °C for the reverse micelle system as a reaction medium. All results demonstrated the potential use of the SOLAC for biodegradation of phenolic environmental pollutants in non-conventional media.
  2. Mohtar SS, Tengku Malim Busu TN, Md Noor AM, Shaari N, Yusoff NA, Bustam Khalil MA, et al.
    Bioresour Technol, 2015 Sep;192:212-8.
    PMID: 26038325 DOI: 10.1016/j.biortech.2015.05.029
    The objective of this study is to extract and characterize lignin from oil palm biomass (OPB) by dissolution in 1-butyl-3-methylimidazolium chloride ([bmim][Cl]), followed by the lignin extraction through the CO2 gas purging prior to addition of aluminum potassium sulfate dodecahydrate (AlK(SO4)2 · 12H2O). The lignin yield, Y(L) (%wt.) was found to be dependent of the types of OPB observed for all precipitation methods used. The lignin recovery, RL (%wt.) obtained from CO2-AlK(SO4)2 · 12H2O precipitation was, however dependent on the types of OPB, which contradicted to that of the acidified H2SO4 and HCl solutions of pH 0.7 and 2 precipitations. Only about 54% of lignin was recovered from the OPB. The FTIR results indicate that the monodispersed lignin was successfully extracted from the OPT, OPF and OPEFB having a molecular weight (MW) of 1331, 1263 and 1473 g/mol, and degradation temperature of 215, 207.5 and 272 °C, respectively.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links