Displaying all 2 publications

Abstract:
Sort:
  1. Kaliappan A, Kaliappan V, Lakshmi JT, Raja S, Nikhat SS, Vidya MS, et al.
    Maedica (Bucur), 2022 Jun;17(2):464-470.
    PMID: 36032603 DOI: 10.26574/maedica.2022.17.2.464
    Introduction: Nipah virus (NiV) was reported for the first time from the Kampung Sungai Nipah village of Malaysia in 1998. Since then, there have been multiple outbreaks, all of them in South- and South-East Asia. According to the World Health Organization (WHO), up to 75% of Nipah infections were proven to be fatal. Nipah virus belongs to the group of Biosafety Level-4 pathogen associated with high case fatality rate (40-75%). Methodology:According to the PRISMA guidelines for 2020, we searched in four medical databases (PubMed, Google Scholar, EMBASE and Scopus) and selected relevant studies from the past twenty years till November 2021. Review:Nipah virus was first detected in Malaysia's Kampung Sungai Nipah in 1998. By May 1999, the Malaysia Ministry of Health in association with the Centers for Disease Control (CDC) reported a total of 258 cases with a case fatality rate of almost 40%. Nipah in Kozhikode:Experts from the Pune Institute and Bhopal's National Institute of High Security Animal Diseases had collected Bat samples from Pazhoor in Chathamangalam gram panchayat (where a 12-year-old died due to Nipah infection on September 5 carried antibodies of the virus). All Indian outbreaks have seen person-to-person transmission. The virus found in Kerala differed from those two variants in terms of genetic structure. It also differed by 1.96% from the Bangladesh variant. The difference with the Malaysian variant was 8.42%. While PCR is the most sensitive technique for diagnosing active NiV infection, NiV-specific IgM ELISA offers a serological option when PCR is not available. Conclusions:Understanding the fruit bat ecology, NiV illness seasonality, and the transmission risk of various intermediate species requires a One Health approach. The danger of reintroduction into animal or human populations cannot be handled without a thorough understanding of the wildlife reservoir.
  2. Karthika A, Sudhakar C, Karuppasamy P, Tamilselvi B, Meena S, Anantharaju KS, et al.
    Sci Rep, 2024 Nov 20;14(1):28714.
    PMID: 39567594 DOI: 10.1038/s41598-024-80146-2
    A highly selective, sensitive caffeic acid (CA) detection based on calcium oxide nanoparticles (CaO NPs) derived from extract of Moringa oleifera leaves decorated graphitic carbon nitride covalently grafted poly vinyl alcohol (CaO/g-C3N4/PVA) nanocomposite modified glassy carbon electrode (GCE) was studied. A facile sonochemical method was adapted to synthesis nanomaterials and characterized by HR-TEM (High resolution transmission electron microscopy), FT-IR (Fourier transform infrared spectroscopy), XRD (X-ray diffraction), FE-SEM (Field emission scanning electron microscopy), EDX (Energy dispersive X-ray analysis), Mapping and BET (Brunauer-Emmett-Teller) analysis, and electrochemical techniques. The nanocomposite modified GCE exhibited an excellent catalytic performance to the oxidation of CA under optimized conditions owing to better electron transfer efficiency, conductivity and high surface area of the electrode material. The present electrochemical sensor showed high selectivity towards the determination of 10 µM CA in the presence of 100-fold higher concentrations of interferents. The modified CA sensor exhibited a wide sensing linear range from 0.01 µM to 70 µM and the detection limit (LOD) was found to be 0.0024 µM (S/N = 3) in 0.1 M phosphate buffer saline (PBS) as a supporting electrolyte at pH 7.0. The fabricated CA sensor provides an excellent stability, reproducibility and selectivity for the determination of CA. The modified CA sensor was applied to real blood plasma samples and obtained good recovery (97.6-100.1%) results.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links