Displaying all 2 publications

Abstract:
Sort:
  1. Zaharani L, Khaligh NG, Mihankhah T, Johan MR
    Mol Divers, 2021 Feb;25(1):323-332.
    PMID: 32361887 DOI: 10.1007/s11030-020-10092-4
    This paper presents the efficient synthesis of 2-amino-4H-benzo[b]pyrans using mesoporous poly-melamine-formaldehyde as a polymeric heterogeneous catalyst. According to the principals of green chemistry, the reaction was performed by the planetary ball milling process at ambient and neat conditions. The heterogeneous catalyst could be reused up to five runs with no reducing of catalytic efficiency. A variety of substituted 2-amino-4H-benzo[b]pyrans were obtained in good to excellent yields under eco-friendly conditions. Other advantages of the current methodology include short reaction time, wide substrate-scope, and use of a metal-free polymeric catalyst. Also, the current method avoids the use of hazardous reagents and solvents, tedious workup and multi-step purification. This work revealed that porous organic polymers containing Lewis base sites having acceptor-donner hydrogen bonding functional groups, and high porosity could play a vital role in the promotion of the one-pot multicomponent reactions in the solid-phase synthesis.
  2. Ghaffari Khaligh N, Mihankhah T, Titinchi S, Shahnavaz Z, Rafie Johan M
    Turk J Chem, 2020;44(4):1100-1109.
    PMID: 33488215 DOI: 10.3906/kim-2005-6
    This work introduces a new additive named 4,4'-trimethylenedipiperidine for the practical and ecofriendly preparation of ethyl 5-amino-7-(4-phenyl)-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine-6-carboxylate derivatives. This chemical is commercially available and easy to handle. It also possesses a low melting point and a broad liquid range temperature, high thermal stability, and good solubility in water. Based on green chemistry principles, the reaction was performed in a) a mixture of green solvents i.e. water and ethanol (1:1 v/v) at reflux temperature, and b) the additive was liquefied at 65 °C and the reaction was conducted in the liquid state of the additive. High yields of the desired triazolo-pyrimidines were obtained under both aforementioned conditions. Our results demonstrated that this additive, containing 2 Lewis base sites and able to act as an acceptor-donor hydrogen bonding group, is a novel and efficient alternative to piperidine, owing to its unique properties such as its reduced toxicity, nonflammable nature, nonvolatile state, broad liquid range temperature, high thermal stability, and ability to be safely handled. Furthermore, this additive could be completely recovered and exhibited high recyclability without any change in its chemical structure and no significant reduction in its activity. The current methodology has several advantages: (a) it avoids the use of hazardous materials, as well as toxic, volatile, and flammable solvents, (b) it does not entail tedious processes, harsh conditions, and the multistep preparation of catalysts, (c) it uses a metal-free and noncorrosive catalyst, and (d) reduces the generation of hazardous waste and simple work-up processes. The most important result of this study is that 4,4'-trimethylenedipiperidine can be a promising alternative for toxic, volatile, and flammable base reagents in organic synthesis owing to its unique properties.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links