Displaying all 2 publications

Abstract:
Sort:
  1. Mo W, Saibon JB, Li Y, Li J, He Y
    BMC Public Health, 2024 Feb 19;24(1):517.
    PMID: 38373997 DOI: 10.1186/s12889-024-18043-6
    OBJECTIVE: The objective of this study was to conduct a systematic review to summarize and assess the advancements lately made on the enjoyable impacts of game-based physical education interventions on children and adolescents. Additionally, it attempted to identify the effects and variables influencing the enjoyable outcomes of children and adolescents' engagement in physical education games, through meta-analysis.

    METHODS: This study involves a comprehensive search of different databases like Web of Science, PubMed, Embase, EBSCOhost, Cochrane, and Scopus. Specific criteria are established for the selection process to make sure the relevant literature included. The quality assessment of the included researches is conducted based on the guidelines outlined in the Cochrane 5.1 handbook. Review Manager 5.3 software is employed to synthesis the effect sizes. Additionally, bias is assessed using funnel plots, and to identify potential sources of heterogeneity, subgroup analyses are performed.

    RESULTS: A total of 1907 academic papers, out of which 2 articles were identified via other data sources. The present study examined the impact of a pedagogical intervention involving physical education games on the enjoyment experienced by children and adolescents. The results indicated a significant positive effect (MD = 0.53, 95%CI:[0.27,0.79], P 

  2. Tan XQ, Mo W, Lin X, Loh JY, Mohamed AR, Ong WJ
    Nanoscale, 2023 Apr 06;15(14):6536-6562.
    PMID: 36942445 DOI: 10.1039/d2nr05718b
    The electro/photocatalytic CO2 reduction reaction (CO2RR) is a long-term avenue toward synthesizing renewable fuels and value-added chemicals, as well as addressing the global energy crisis and environmental challenges. As a result, current research studies have focused on investigating new materials and implementing numerous fabrication approaches to increase the catalytic performances of electro/photocatalysts toward the CO2RR. MXenes, also known as 2D transition metal carbides, nitrides, and carbonitrides, are intriguing materials with outstanding traits. Since their discovery in 2011, there has been a flurry of interest in MXenes in electrocatalysis and photocatalysis, owing to their several benefits, including high mechanical strength, tunable structure, surface functionality, high specific surface area, and remarkable electrical conductivity. Herein, this review serves as a milestone for the most recent development of MXene-based catalysts for the electrocatalytic and photocatalytic CO2RR. The overall structure of MXenes is described, followed by a summary of several synthesis pathways classified as top-down and bottom-up approaches, including HF-etching, in situ HF-formation, electrochemical etching, and halogen etching. Additionally, the state-of-the-art development in the field of both the electrocatalytic and photocatalytic CO2RR is systematically reviewed. Surface termination modulation and heterostructure engineering of MXene-based electro/photocatalysts, and insights into the reaction mechanism for the comprehension of the structure-performance relationship from the CO2RR via density functional theory (DFT) have been underlined toward activity enhancement. Finally, imperative issues together with future perspectives associated with MXene-based electro/photocatalysts are proposed.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links