Selenium (Se) is able to transform from inorganic to organic forms via many bacterial species. This feature is being considered for delivering more bioavailable selenium compounds such as selenocysteine and selenomethionine for human and animal diet. This study investigated the effects of bacterial selenoprotein versus inorganic Se on the carcass characteristics, breast meat selenium content, antioxidant status, and meat quality of broiler chickens. One hundred and eighty chicks were randomly allotted to five treatments of a basal diet supplemented with no Se, sodium selenite, Enterobactercloacae Selenium (ADS1-Se), Klebsiellapneumoniae-Selenium (ADS2-Se), and Stenotrophomonasmaltophilia-Selenium (ADS18-Se). The results showed that bacterial selenoprotein has the ability to deposit more Se in the breast meat compared to sodium selenite. Both Se sources reduced breast meat drip loss, cooking loss, shear force, and 2-thiobarbituric acid reactive substances (TBARS) significantly. It also increased total antioxidant (TAC) and glutathione peroxidase (GSH-Px) in comparison with the negative control. The highest activity of (GSH-Px), catalase (CAT), and superoxide dismutase (SOD) was found in bacterial selenoprotein. In conclusion, bacterial selenoprotein is more efficient than sodium selenite in increasing the breast meat Se deposition and oxidative capacity of broiler chickens. Therefore, it can be effectively used to produce Se-rich meat as a functional food.
The use of toxic and less bioavailable inorganic selenium can now be supplemented with an alternative organic source from bacterial species in nutrition for human and animal benefit. This study investigated the effects of selenium sources on laying performance, egg quality characteristics, intestinal morphology, caecum microbial population, and digesta volatile fatty acids in laying hens. One hundred and forty-four Lohman Brown Classic laying hens, at 23 weeks of age, were divided into four experimental groups (36 hens in each), differing in form of Se supplementation: no Se supplementation (Con), 0.3 mg/kg of inorganic Se in the form of sodium selenite (Na2SeO3), 0.3 mg/kg of organic Se from selenium yeast (Se-Yeast), and 0.3 mg/kg of organic Se from Stenotrophomonas maltophilia (bacterial organic Se, ADS18). The results showed that different dietary Se sources significantly affected laying rate, average egg weight, daily egg mass, feed conversion ratio (FCR), and live bodyweight (LBW) (p < 0.05). However, average daily feed intake and shell-less and broken eggs were unaffected (p > 0.05) among the treatment groups. The findings revealed that selenium sources had no (p > 0.05) effect on egg quality (external and internal) parameters. However, eggshell breaking strength and Haugh unit were significantly (p < 0.05) improved with organic (ADS18 or Se-yeast) Se-fed hens compared to the control group. In addition, egg yolk and breast tissue Se concentrations were higher (p < 0.05) in the dietary Se supplemented group compared to the control. Intestinal histomorphology revealed that hens fed ADS18 or Se-Yeast groups had significantly (p < 0.05) higher villi height in the duodenum and jejunum compared to those fed Na2SeO3 or a basal diet. However, when compared to organic Se fed (ADS18 or Se-Yeast) hens, the ileum villus height was higher (p < 0.05) in the basal diet group; with the lowest in the SS among the treatment groups. A significant increase (p < 0.05) of Lactobacilli spp. and Bifidobacteria spp., and a decrease of Escherichia coli and Salmonella spp. population were observed in the organic (ADS18 or Se-yeast) compared to inorganic supplemented and control hens. The individual digesta volatile fatty acid (VFA) was significantly different, but with no total VFA differences. Thus, bacterial selenoprotein or Se-yeast improved the performance index, egg quality characteristics, egg yolk and tissue Se contents, and intestinal villus height in laying hens. Moreover, caecum beneficial microbes increased with a decrease in the harmful microbe population and affected individual cecal volatile fatty acids without affecting the total VFA of the laying hens digesta.
Averrhoa carambola L. is a tropical tree with edible fruit that grows at different climatic conditions. Despite its nutritive value and reported health benefits, it is a controversial fruit owing to its rich oxalate content. The present study aimed at investigating aroma and nutrient primary metabolites distribution in A. carambola fruits grown in Indonesia, Malaysia (its endemic origin) versus Egypt, and at different ripening stages. Two techniques were employed to assess volatile and non-volatile metabolites including headspace solid-phase micro-extraction (HS-SPME) joined with gas chromatography coupled with mass-spectrometry (GC-MS) and GC-MS post silylation, respectively. Twenty-four volatiles were detected, with esters amounting for the major class of volatiles in Egyptian fruit at ca. 66%, with methyl caproate as the major component, distinguishing it from other origins. In contrast, aldehydes predominated tropically grown fruits with the ether myristicin found exclusively in these. Primary metabolites profiling led to the identification of 117 metabolites viz. sugars, polyols and organic acids. Fructose (38-48%) and glucose (21-25%) predominated sugar compositions in ripe fruits, whereas sorbitol was the major sugar alcohol (2.4-10.5%) in ripe fruits as well. Oxalic acid, an anti-nutrient with potential health risks, was the major organic acid detected in all the studied fruits (1.7-2.7%), except the Malaysian one (0.07%). It increases upon fruit ripening, including considerable amounts of volatile oxalate esters detected via SPME, and which must not be omitted in total oxalate determinations for safety assessments.