Urbanization could potentially modify Aedes albopictus' ecology by changing the dynamics of the species, and affecting their breeding sites due to environmental changes, and thus contribute to dengue outbreaks. Thus, this study was conducted to evaluate the biting rhythm, fecundity and longevity of adult female Ae. albopictus in relation to urbanization strata; urban, suburban and rural areas in Penang Island, Malaysia. The experiments were done in comparison to a laboratory strain. Twenty-four hours biting activity of all the mosquito strains showed a clear bimodal biting activity, with morning and evening twilight peaks. The interaction effect between biting time and mosquito strains was not significant. Meanwhile, differences in fecundity among mosquito strains were statistically significant (F(3,442) = 10.559, P < 0.05) with urban areas having higher mean number of eggs (mean = 107.69, standard error = 3.98) than suburban (mean = 94.48, standard error = 5.18), and rural areas (mean = 72.52, standard error = 3.87). Longevity of adult females were significantly higher (F(3,441) = 31.259, P < 0.05) for mosquito strains from urban areas compared to the other strains. These findings would provide crucial information for the planning of control programs in Malaysia, particularly Penang.
The medically important mosquito, Aedes albopictus is native to Asia and has become a major health concern in most Asian countries including Malaysia. Being recognized as a dengue vector, a clearer understanding of how mosquito populations are geographically connected, may therefore represent a profound yet significant understanding of control strategies. There are no documented reports on the genetic structure of Ae. albopictus populations from different developed settlements inferred from microsatellite DNA markers in Malaysia, particularly in Penang Island (Northern Peninsular Malaysia). Here, we assessed the molecular population genetics of Ae. albopictus in terms of their allelic variation, genetic diversity and population structure. A total of 42 mosquitoes were sampled from Jelutong, Batu Maung and Balik Pulau which represented urban, suburban and rural areas in Penang Island respectively and analysed for polymorphism at six microsatellite loci. All of the microsatellite markers were successfully amplified and were polymorphic, showing low genetic structure among geographic populations (FST= 0.0362). It is supported with admixture individuals observed in STRUCTURE and FCA and this suggests that high gene flow has been experienced between populations. These findings implicate passive dispersal through human-aided transportation; as a factor shaping the genetic structure of Ae. albopictus populations in Penang Island.