METHODS: For experiments, the autopsy reports belonging to eight different causes of death were collected, preprocessed and converted into 43 master feature vectors using various schemes for feature extraction, representation, and reduction. The six different text classification techniques were applied on these 43 master feature vectors to construct a classification model that can predict the cause of death. Finally, classification model performance was evaluated using four performance measures i.e. overall accuracy, macro precision, macro-F-measure, and macro recall.
RESULTS: From experiments, it was found that that unigram features obtained the highest performance compared to bigram, trigram, and hybrid-gram features. Furthermore, in feature representation schemes, term frequency, and term frequency with inverse document frequency obtained similar and better results when compared with binary frequency, and normalized term frequency with inverse document frequency. Furthermore, the chi-square feature reduction approach outperformed Pearson correlation, and information gain approaches. Finally, in text classification algorithms, support vector machine classifier outperforms random forest, Naive Bayes, k-nearest neighbor, decision tree, and ensemble-voted classifier.
CONCLUSION: Our results and comparisons hold practical importance and serve as references for future works. Moreover, the comparison outputs will act as state-of-art techniques to compare future proposals with existing automated text classification techniques.
METHODS: A systematic literature search for studies with the primary aim of using OSN to detect and track a pandemic was conducted. We conducted an electronic literature search for eligible English articles published between 2004 and 2015 using PUBMED, IEEExplore, ACM Digital Library, Google Scholar, and Web of Science. First, the articles were screened on the basis of titles and abstracts. Second, the full texts were reviewed. All included studies were subjected to quality assessment.
RESULT: OSNs have rich information that can be utilized to develop an almost real-time pandemic surveillance system. The outcomes of OSN surveillance systems have demonstrated high correlations with the findings of official surveillance systems. However, the limitation in using OSN to track pandemic is in collecting representative data with sufficient population coverage. This challenge is related to the characteristics of OSN data. The data are dynamic, large-sized, and unstructured, thus requiring advanced algorithms and computational linguistics.
CONCLUSIONS: OSN data contain significant information that can be used to track a pandemic. Different from traditional surveys and clinical reports, in which the data collection process is time consuming at costly rates, OSN data can be collected almost in real time at a cheaper cost. Additionally, the geographical and temporal information can provide exploratory analysis of spatiotemporal dynamics of infectious disease spread. However, on one hand, an OSN-based surveillance system requires comprehensive adoption, enhanced geographical identification system, and advanced algorithms and computational linguistics to eliminate its limitations and challenges. On the other hand, OSN is probably to never replace traditional surveillance, but it can offer complementary data that can work best when integrated with traditional data.
METHODS: Accident-related autopsy reports were obtained from one of the largest hospital in Kuala Lumpur. These reports belong to nine different accident-related causes of death. Master feature vector was prepared by extracting features from the collected autopsy reports by using unigram with lexical categorization. This master feature vector was used to detect cause of death [according to internal classification of disease version 10 (ICD-10) classification system] through five automated feature selection schemes, proposed expert-driven approach, five subset sizes of features, and five machine learning classifiers. Model performance was evaluated using precisionM, recallM, F-measureM, accuracy, and area under ROC curve. Four baselines were used to compare the results with the proposed system.
RESULTS: Random forest and J48 decision models parameterized using expert-driven feature selection yielded the highest evaluation measure approaching (85% to 90%) for most metrics by using a feature subset size of 30. The proposed system also showed approximately 14% to 16% improvement in the overall accuracy compared with the existing techniques and four baselines.
CONCLUSION: The proposed system is feasible and practical to use for automatic classification of ICD-10-related cause of death from autopsy reports. The proposed system assists pathologists to accurately and rapidly determine underlying cause of death based on autopsy findings. Furthermore, the proposed expert-driven feature selection approach and the findings are generally applicable to other kinds of plaintext clinical reports.