Displaying all 3 publications

Abstract:
Sort:
  1. Timon C, Keady C, Murphy CG
    Malays Orthop J, 2021 Mar;15(1):1-11.
    PMID: 33880141 DOI: 10.5704/MOJ.2103.001
    Fat Embolism Syndrome (FES) is a poorly defined clinical phenomenon which has been attributed to fat emboli entering the circulation. It is common, and its clinical presentation may be either subtle or dramatic and life threatening. This is a review of the history, causes, pathophysiology, presentation, diagnosis and management of FES. FES mostly occurs secondary to orthopaedic trauma; it is less frequently associated with other traumatic and atraumatic conditions. There is no single test for diagnosing FES. Diagnosis of FES is often missed due to its subclinical presentation and/or confounding injuries in more severely injured patients. FES is most frequently diagnosed using the Gurd and Wilson criteria, like its rivals it is not clinically validated. Although FES is a multi-system condition, its effects in the lung, brain, cardiovascular system and skin cause most morbidity. FES is mostly a self-limiting condition and treatment is supportive in nature. Many treatments have been trialled, most notably corticosteroids and heparin, however no validated treatment has been established.
  2. Aggarwal A, Court LE, Hoskin P, Jacques I, Kroiss M, Laskar S, et al.
    BMJ Open, 2023 Dec 07;13(12):e077253.
    PMID: 38149419 DOI: 10.1136/bmjopen-2023-077253
    INTRODUCTION: Fifty per cent of patients with cancer require radiotherapy during their disease course, however, only 10%-40% of patients in low-income and middle-income countries (LMICs) have access to it. A shortfall in specialised workforce has been identified as the most significant barrier to expanding radiotherapy capacity. Artificial intelligence (AI)-based software has been developed to automate both the delineation of anatomical target structures and the definition of the position, size and shape of the radiation beams. Proposed advantages include improved treatment accuracy, as well as a reduction in the time (from weeks to minutes) and human resources needed to deliver radiotherapy.

    METHODS: ARCHERY is a non-randomised prospective study to evaluate the quality and economic impact of AI-based automated radiotherapy treatment planning for cervical, head and neck, and prostate cancers, which are endemic in LMICs, and for which radiotherapy is the primary curative treatment modality. The sample size of 990 patients (330 for each cancer type) has been calculated based on an estimated 95% treatment plan acceptability rate. Time and cost savings will be analysed as secondary outcome measures using the time-driven activity-based costing model. The 48-month study will take place in six public sector cancer hospitals in India (n=2), Jordan (n=1), Malaysia (n=1) and South Africa (n=2) to support implementation of the software in LMICs.

    ETHICS AND DISSEMINATION: The study has received ethical approval from University College London (UCL) and each of the six study sites. If the study objectives are met, the AI-based software will be offered as a not-for-profit web service to public sector state hospitals in LMICs to support expansion of high quality radiotherapy capacity, improving access to and affordability of this key modality of cancer cure and control. Public and policy engagement plans will involve patients as key partners.

  3. Jahangir CA, Page DB, Broeckx G, Gonzalez CA, Burke C, Murphy C, et al.
    J Pathol, 2024 Mar;262(3):271-288.
    PMID: 38230434 DOI: 10.1002/path.6238
    Recent advances in the field of immuno-oncology have brought transformative changes in the management of cancer patients. The immune profile of tumours has been found to have key value in predicting disease prognosis and treatment response in various cancers. Multiplex immunohistochemistry and immunofluorescence have emerged as potent tools for the simultaneous detection of multiple protein biomarkers in a single tissue section, thereby expanding opportunities for molecular and immune profiling while preserving tissue samples. By establishing the phenotype of individual tumour cells when distributed within a mixed cell population, the identification of clinically relevant biomarkers with high-throughput multiplex immunophenotyping of tumour samples has great potential to guide appropriate treatment choices. Moreover, the emergence of novel multi-marker imaging approaches can now provide unprecedented insights into the tumour microenvironment, including the potential interplay between various cell types. However, there are significant challenges to widespread integration of these technologies in daily research and clinical practice. This review addresses the challenges and potential solutions within a structured framework of action from a regulatory and clinical trial perspective. New developments within the field of immunophenotyping using multiplexed tissue imaging platforms and associated digital pathology are also described, with a specific focus on translational implications across different subtypes of cancer. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links