Materials and Methods: Extracted human teeth were biomechanically prepared, vertically sectioned, placed in the tissue culture wells exposing the root canal surface to E. faecalis to form a biofilm. At the end of the third week, all groups were treated for 15 min with the test solutions and the control. The results were analyzed both quantitatively and qualitatively.
Results: Statistical analysis was performed by using one-way analysis of variance and compared by the Mann-Whitney test using the Statistical Package for the Social Sciences (SPSS) software, version 20.0. The qualitative assay with the 3-week biofilm on the canal portion showed complete inhibition of bacterial growth for NaOCl, whereas samples treated with herbal solutions showed significant reduction of bacterial growth compared to control group, which showed 139.9 × 109 CFU/mL among the experimental herbal solutions groups. P. amarus has shown maximum bacterial count followed by C. longa and T. indica.
Conclusion: NaOCl 5% showed maximum antibacterial activity against 3-week biofilm on tooth substrate. T. indica, P. amarus, and C. longa showed statistically significant antibacterial activity against 3-week biofilm. The use of herbal alternatives might prove to be advantageous considering the several undesirable characteristics of NaOCl.
SUBJECTS AND METHODS: Roots from human premolar teeth (n = 40) were infected with E. faecalis strain the American Type Culture Collection 29212 in brain heart infusion for 21 days. After the experimental period, specimens were divided into two groups, Group A (n = 20), Group B (n = 20), and Group A specimens were stained with fluorescein diacetate dye for the detection of viability and adherence Group B were stained with acridine orange dye for detection of metabolic activity and adherence. Samples were washed, thoroughly sectioned and examined by confocal laser scanning microscopy. Computer-assisted determinants of fluorescence, bacterial viability, metabolic activity, and adherence were compared statistically.
RESULTS: E. faecalis was able to invade the dentinal tubules to a depth of 1-400 μm and adhere to 1-200 μm depth. Adherence (90%) was significantly higher in 1-100 μm using fluorescein diacetate and acridine orange dye.
CONCLUSION: Adherence of E. faecalis as evaluated by confocal laser scanning microscope was highest at the depth of 1-100 μm which may have an impact on the shaping and cleaning procedures on the root canal.