Displaying all 2 publications

Abstract:
Sort:
  1. Mustapa NB, Ahmad R, Ibrahim WMW, Abdullah MMAB, Wattanasakulpong N, Nemeș O, et al.
    Materials (Basel), 2023 May 31;16(11).
    PMID: 37297236 DOI: 10.3390/ma16114103
    Globally, there is an increasing need for ceramic materials that have a variety of applications in the environment, for precision tools, and for the biomedical, electronics, and environmental industries. However, in order to obtain remarkable mechanical qualities, ceramics have to be manufactured at a high temperature of up to 1600 °C over a long heating period. Furthermore, the conventional approach presents issues with agglomeration, irregular grain growth, and furnace pollution. Many researchers have developed an interest in using geopolymer to produce ceramic materials, focusing on improving the performances of geopolymer ceramics. In addition to helping to lower the sintering temperature, it also improves the strength and other properties of the ceramics. Geopolymer is a product of polymerization involving aluminosilicate sources such as fly ash, metakaolin, kaolin, and slag through activation using an alkaline solution. The sources of the raw materials, the ratio of the alkaline solution, the sintering time, the calcining temperature, the mixing time, and the curing time may have significant impacts on the qualities. Therefore, this review aims to study the effects of sintering mechanisms on the crystallization of geopolymer ceramics, concerning the strength achieved. A future research opportunity is also presented in this review.
  2. Wei LK, Abd Rahim SZ, Al Bakri Abdullah MM, Yin ATM, Ghazali MF, Omar MF, et al.
    Materials (Basel), 2023 Jun 27;16(13).
    PMID: 37444950 DOI: 10.3390/ma16134635
    In the pursuit of achieving zero emissions, exploring the concept of recycling metal waste from industries and workshops (i.e., waste-free) is essential. This is because metal recycling not only helps conserve natural resources but also requires less energy as compared to the production of new products from virgin raw materials. The use of metal scrap in rapid tooling (RT) for injection molding is an interesting and viable approach. Recycling methods enable the recovery of valuable metal powders from various sources, such as electronic, industrial, and automobile scrap. Mechanical alloying is a potential opportunity for sustainable powder production as it has the capability to convert various starting materials with different initial sizes into powder particles through the ball milling process. Nevertheless, parameter factors, such as the type of ball milling, ball-to-powder ratio (BPR), rotation speed, grinding period, size and shape of the milling media, and process control agent (PCA), can influence the quality and characteristics of the metal powders produced. Despite potential drawbacks and environmental impacts, this process can still be a valuable method for recycling metals into powders. Further research is required to optimize the process. Furthermore, ball milling has been widely used in various industries, including recycling and metal mold production, to improve product properties in an environmentally friendly way. This review found that ball milling is the best tool for reducing the particle size of recycled metal chips and creating new metal powders to enhance mechanical properties and novelty for mold additive manufacturing (MAM) applications. Therefore, it is necessary to conduct further research on various parameters associated with ball milling to optimize the process of converting recycled copper chips into powder. This research will assist in attaining the highest level of efficiency and effectiveness in particle size reduction and powder quality. Lastly, this review also presents potential avenues for future research by exploring the application of RT in the ball milling technique.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links