Dye-sensitized solar cell (DSSC) is a photovoltaic device that can be produced from natural source pigments or natural dyes. The selection of natural dyes for DSSC application is currently under research. The utilization of natural dye materials that are easy to obtain, cost-effective, and non-toxic can reduce waste during DSSC fabrication. Natural dyes can be extracted from plants through extraction and chromatography methods. The suitability and viability of utilizing natural dyes as photosensitizers in DSSCs can be predicted using appropriate software simulation by varying related parameters to produce high power conversion efficiency. In this context, the purpose of the review is to highlight the evolution of performance improvement in the development of DSSCs with consideration of natural dye extraction and software simulation. This review also focuses on the results of extracting natural dyes from herbal ingredients, which are still very limited in information, and several parts of herbal plants that can be used as natural dye sources in the future of solid-state DSSCs have been identified. Based on the results of this review, the highest efficiency was obtained for the DSSC that used chlorophyll pigments as natural dyes using Peltophorum pterocarpum leaves with 6.07%, followed by anthocyanin pigments as natural dyes using raspberries (black) fruits with 1.5%, flavonoid pigments as natural dyes using Curcuma longa herbs with 0.64%, and flavonoid pigments as natural dyes using Indigofera tinctoria flowers with 0.46%.
The anion in the title salt, (C(7)H(11)N(2))[SnBr(2)(C(6)H(5))(3)], lies on a twofold rotation axis that passes through the metal atom as well as the C(ipso)-C(para) atoms of one of the aromatic rings. The metal center is five-coordinate in a trans-Br(2)SnC(3) trigonal bipyramidal geometry. The cation is disordered about a center of inversion.