This paper reports the cryopreservation of Nephelium ramboutan-ake shoot tips derived from in vitro shoot multiplication and in vitro seed germination using vitrification. Preculture with either 0.5 M sucrose for 2 days or a combination of 0.3 M sucrose and 0.5 M glycerol for 3 days enhanced dehydration tolerance and resulted in the highest survival of shoot tips; however, none of the shoot tips withstood liquid nitrogen (LN) exposure. The use of a lower temperature (0 degree C) during exposure to plant vitrification solution (PVS2) led to higher survival of shoot tips, compared to exposure at 25 degree C. The survival percentage of shoot tips exposed to PVS2 for up to 20 min at 0°C was 83.3 percent. It was only 53.3 percent when shoot tips were exposed to PVS2 at 25 degree C for 5 min. The importance of vitamin C for reducing oxidative stress in shoots tips was demonstrated. The addition of 0.28 mM vitamin C during critical steps of the vitrification process resulted in a high survival (96.7 percent) without LN exposure, compared to 73.3 percent for shoot tips not treated with vitamin C. Moreover, 3.3 percent shoot tips withstood LN exposure when vitamin C was added during the loading step. This result suggests that cryopreservation is possible for this tropical, recalcitrant seeded tree species.
Excised embryonic axes from seeds of three taxa, namely, Citrus suhuiensis cv. limau madu, Citrumelo (Citrus paradisi x Poncirus trifoliate) and Fortunella polyandra, were desiccated in a laminar airflow, over silica gel, and ultra-rapidly. Desiccation sensitivity (WC50) was estimated for each taxon using the quantal response model. High desiccation tolerance (WC50 = 0.11 g water per g dry mass. g/gdw) was observed for limau madu embryonic axes desiccated in a laminar airflow and ultra-rapidly (WC50 =0.10 g/gdw). Desiccation tolerance was substantially lower (WC50 = 0.19 g/gdw) for silica gel dehydration. Similarly, high desiccation tolerance (WC50 = 0.15 g/gdw) was associated with F. polyandra embryonic axes when desiccated in a laminar airflow, while a lower desiccation tolerance (WC50 = 0.17 g/gdw) was observed with silica gel dehydration. Ultra-rapid desiccation led to the highest desiccation tolerance (WC50 = 0.14 g/gdw). The dehydration rate, however, had no influence on desiccation tolerance (WC50 ~ 0.14 g/gdw) for Citrumelo embryonic axes. After each desiccation period, embryonic axes were directly immersed in liquid nitrogen (LN) followed by rapid rewarming. Normal seedling recovery of 80 to 83% for excised embryonic axes of limau madu was observed for laminar airflow and ultra-rapid dehydration, but for silica gel dehydration, 57% recovery was obtained. Similarly, for Citrumelo, high recoveries of 100% and 97% were obtained from axes desiccated in a laminar airflow and using ultra-rapid dehydration, respectively, whereas a lower value was associated with silica gel dehydration (80%). For F. polyandra, 50% recovery was obtained both for laminar airflow and ultra-rapid dehydration, while much lower recovery (43%) was associated with silica gel dehydration. Regardless of the drying method employed, axis survival percentages following exposure to LN were commensurate with the desiccation sensitivity pattern.
To further understand the survival characteristics of desiccation-sensitive excised embryonic axes of Fortunella polyandra to desiccation and cryopreservation it is necessary to study the impact of drying rates on both the ultrastructure and electrolyte leakage.
There is a pressing need for practical and successful conservation efforts to establish long-term germplasm collections of recalcitrant and tropical species, given the challenge and threat that these plants are facing. Cryopreservation is the only way of conserving some of these species, especially those with temperature or desiccation sensitive (recalcitrant) seeds. This review covers reports on cryopreservation studies of shoot tips (apical and axillary) of tropical and subtropical plants. Since many of these species have recalcitrant seeds, the cryopreservation successes, failures and problems involved with these seeds are also discussed. The methodologies, important factors and steps involved in successful cryopreservation protocols are analyzed. Finally strategies are suggested to develop a successful cryopreservation protocol for new plant species, in particular those with tropical recalcitrant seeds.
Epinephelus fuscoguttatus is a commercially important marine fish species in southeast Asia. Due to overfishing and water pollution, this species has been declared as near-threatened. Thus, to provide information to help maintain and preserve the species, microsatellites were developed, using an enriched genomic library method. Thirty individuals were collected from the hatchery of the Fishery Research Institute, Terengganu, Malaysia. These individuals, from four to six years old, originated from Sabah and are maintained in captive culture as broodstock. Genomic DNA was extracted from the fins of selected individuals that weighed 3-8 kg. Ten microsatellite loci were found to be polymorphic in this population, with 5 to 21 alleles per locus. Observed and expected heterozygosities ranged from 0.53 to 0.97 and 0.59 to 0.95, respectively. Only one locus deviated significantly from Hardy-Weinberg equilibrium and no significant linkage disequilibrium was found among the pairs of loci. These polymorphic microsatellite loci will be used by the Malaysian Fishery Research Institute for investigating genetic diversity and for developing breeding strategies.
Temperature is one of the key factors in limiting the distribution of plants and controlling major metabolic processes. A series of simulated reciprocal transplant experiments were performed to investigate the effect of temperature on plant chemical composition. Polygonum minus of different lowland and highland origin were grown under a controlled environment with different temperature regimes to study the effects on secondary metabolites. We applied gas chromatography-mass spectrometry and liquid chromatography time-of-flight mass spectrometry to identify the chemical compounds. A total of 37 volatile organic compounds and 85 flavonoids were detected, with the largest response observed in the compositional changes of aldehydes and terpenes in highland plants under higher temperature treatment. Significantly less anthocyanidin compounds and larger amounts of flavonols were detected under higher temperature treatment. We also studied natural variation in the different plant populations growing under the same environment and identified compounds unique to each population through metabolite fingerprinting. This study shows that the origin of different plant populations influences the effects of temperature on chemical composition.
Crosses were made between four varieties ('Mahsuri', 'Setanjung", 'MR84" and 'MR103") of Oryza sativa L. (2n=24, AA) and one accession of O. minuta (2n= 8, BBCC). The seed set obtained ranged between 9.5% and 25.1% depending on the rice variety used. By rescuing 14-day-old embryos and culturing them on 25%-strength MS medium we obtained a total of 414 F1 hybrids. The F1s were vigorous, tillered profusely, were perennial and male-sterile. The hybrids were triploid (ABC) with 36 chromosomes and showed irregular meiosis. The average frequency and range of chromosome associations at metaphase I or early anaphase I pollen mother cells of F1 plants were 29.31(16-36) Is +3.32(0-10) IIs+0.016(0-1) IIIs+0.002(0-1) IVs. Upon backcrossing the original triploid hybrids and colchicine-treated hybrids to their respective recurrent parents, and further embryo rescue, 17 backcross-1 (BC1) plants were obtained. Of all the crosses using MR84, no BC1 plant was obtained even after pollinating 13 894 spikelets of the triploid hybrid. The BC1s were similar in appearence to the F1s and were male-sterile, their chromosome number ranged from 44 to 48. By backcrossing these BC1s and nurturing them through embryo rescue, we obtained 32 BC2 plants. Of these, however, only 18 plants grew vigorously. One of these plants has 24 chromosomes and the other 17 have chromosome numbers ranging between 30 and 37. The 24-chromosome plant was morphologically similar to the O. sativa parent and was partially fertile with a pollen and spikelet fertility of 58.8% and 12.5% respectively. All of the F1 and BC1 plants were found to be resistant to five Malaysian isolates (XO66, XO99, XO100, XO257 and XO319) of Xanthomonas campestris pv oryzae. Amongst the BC2s, the reaction varied from resistant to moderately susceptible. The 24-chromosome BC2 plant was resistant to the four isolates and moderately resistant to isolate XO100 to which the O. sativa parent was susceptible.