Helicobacter pylori genetic diversity is known to be influenced by mobile genomic elements. Here we focused on prophages, the least characterized mobile elements of H. pylori. We present the full genomic sequences, insertion sites and phylogenetic analysis of 28 prophages found in H. pylori isolates from patients of distinct disease types, ranging from gastritis to gastric cancer, and geographic origins, covering most continents. The genome sizes of these prophages range from 22.6-33.0 Kbp, consisting of 27-39 open reading frames. A 36.6% GC was found in prophages in contrast to 39% in H. pylori genome. Remarkably a conserved integration site was found in over 50% of the cases. Nearly 40% of the prophages harbored insertion sequences (IS) previously described in H. pylori. Tandem repeats were frequently found in the intergenic region between the prophage at the 3' end and the bacterial gene. Furthermore, prophage genomes present a robust phylogeographic pattern, revealing four distinct clusters: one African, one Asian and two European prophage populations. Evidence of recombination was detected within the genome of some prophages, resulting in genome mosaics composed by different populations, which may yield additional H. pylori phenotypes.
Although it appears biologically plausible for iron to be associated with gastric carcinogenesis, the evidence is insufficient to lead to any conclusions. To further investigate the relationship between body iron status and gastric cancer risk, we conducted a nested case-control study in the multicentric European Prospective Investigation into Cancer and Nutrition (EPIC) study. The study included 456 primary incident gastric adenocarcinoma cases and 900 matched controls that occurred during an average of 11 years of follow-up. We measured prediagnostic serum iron, ferritin, transferrin and C-reactive protein, and further estimated total iron-binding capacity (TIBC) and transferrin saturation (TS). Odds ratios (ORs) and 95% confidence intervals (CIs) for the risk of gastric cancer by iron metrics were estimated from multivariable conditional logistic regression models. After adjusting for relevant confounders, we observed a statistically significant inverse association between gastric cancer and ferritin and TS indices (ORlog2 = 0.80, 95% CI = 0.72-0.88; OR10%increment = 0.87, 95% CI = 0.78-0.97, respectively). These associations appear to be restricted to noncardia gastric cancer (ferritin showed a p for heterogeneity = 0.04 and TS had a p for heterogeneity = 0.02), and no differences were found by histological type. TIBC increased risk of overall gastric cancer (OR50 µg/dl = 1.13, 95% CI = 1.02-1.2) and also with noncardia gastric cancer (p for heterogeneity = 0.04). Additional analysis suggests that time between blood draw and gastric cancer diagnosis could modify these findings. In conclusion, our results showed a decreased risk of gastric cancer related to higher body iron stores as measured by serum iron and ferritin. Further investigation is needed to clarify the role of iron in gastric carcinogenesis.