Cisplatin (Cis) is an effective chemotherapeutic intervention against many cancer types. However, the oxidative stress-related toxicities associated with cancer cell resistance-induced dose scaling has limited its long-term use. In the present study, we explored the benefits of the antioxidant, tert-butylhydroquinone (tBHQ; 50 mg/kg b.w./day, for 14 days) against Cis single dose injection (7 mg/kg b.w., i.p on Day 8), on testicular toxicity of male Wistar rats. Cis triggered testicular and epididymal oxidative stress, testicular inflammation (upregulated NF-κB, TNF-α and IL-1β mRNA levels, and downregulated IL-10 mRNA level), increased testicular apoptosis (increased Bax/Bcl2 and caspase-3 mRNA levels) and decreased testicular germ cells proliferation. Further, Cis decreased testicular steroidogenesis (decreased expression of StAR, CYP11A1, 3β-HSD and 17β-HSD mRNA and proteins) and decreased follicle stimulating hormone, luteinizing hormone and testosterone levels. Cis also decreased sperm count, motility, viability, normal morphology and Johnsen score. However, intervention with tBHQ significantly decreased oxidative stress by upregulating Nrf2 gene, suppressed inflammation, apoptosis and increased testicular germ cells proliferation. tBHQ also increased steroidogenesis and improved sperm parameters. Taken together, tBHQ improves steroidogenesis and spermatogenesis in Cis-intoxicated rats by improving antioxidant status, dampening inflammation and apoptosis, thus improving the proliferative capacity of spermatogenic cells.
Doxorubicin (DOX) is a broad-spectrum chemotherapeutic drug used in the treatment of cancers. It acts by generating reactive oxygen species in target cells. The actions are, however, not limited to cancerous cells as it attacks healthy cells, killing them. This study investigated the benefits of the antioxidant, tert-butylhydroquinone (tBHQ), on testicular toxicity following DOX therapy. Twenty-four adult male albino rats were assigned randomly into four groups (n = 6), namely: normal control (NC), tBHQ, DOX and tBHQ + DOX groups. tBHQ (50 mg/kg body weight in 1% DMSO) was administered orally for 14 consecutive days, while a single DOX dose (7 mg/kg body weight) was administered intraperitoneally on Day 8. DOX decreased sperm count, motility and viability, and decreased the levels of steroidogenesis-related proteins, and reproductive hormones. Furthermore, DOX decreased the expression of antioxidant cytoprotective genes, and decreased the protein level of proliferating cell nuclear antigen in the testis. Conversely, DOX increased the expression of pro-inflammatory and pro-apoptotic genes in the testis. These negative effects were ameliorated following the intervention with tBHQ. Our results suggest that tBHQ protects the testis and preserves both steroidogenesis and spermatogenesis in DOX-treated rats through the suppression of oxidative stress, inflammation and apoptosis.