This study investigated the optimal synthesis conditions for the production of Raffia Palm Shell Activated Carbon (RPSAC) using phosphoric acid as activation agent. The optimization of the synthesis conditions was achieved using the Central Composite Design (CDD) in Response Surface Methodology (RSM). The influences of impregnation ratio, temperature, time and concentration on the specific surface area and yield of RPSAC were evaluated. Based on the CDD, 2FI and quadratic models were developed for the two responses. Analysis of Variance (ANOVA) was utilized to determine the significant factors and factor interactions for each response. All process variables except impregnation ratio were observed to significantly influence the quality of RPSAC. The optimal synthesis conditions for RPSAC were; 523.68 °C, 76.91%, and 103.83 min for temperature, concentration, and time respectively which provided a specific surface area and yield of 1762.92 m2/g and 77.98 % respectively. The Scanning Electron Microscopy (SEM) with Energy Dispersive X-Ray (EDX) analyses proved that RPSAC had a meso-micro-porous morphology with high carbon and oxygen contents. Fourier-transform infrared spectroscopy (FTIR) revealed the abundance of hydroxyl, carbonyl and carboxylic groups on RPSAC. X-ray Powder Diffraction (XRD) analysis showed that RPSAC composed mainly of amorphous and disordered microcrystalline phases ascribed to the high quartz content of the precursor. The Brunauer-Emmett-Teller (BET) surface area, average pore diameter, total pore volume, and pHpzc of RPSAC were obtained as 456.10 m2/g, 0.25 cm3/g, 2.13 nm and 2.10 correspondingly. Thus, RSM was found to be an excellent and desirable tool for optimal synthesis of RPSAC that possess high surface area and porosity suitable for application in the adsorption of both large and small molecular sized pollutants such as dyes and fluoride in real and aqueous solution.
Fluoride enrichment of groundwater has been adjudged to be a global environmental challenge in the past decade as most humans depend on groundwater for their domestic needs. This study was conducted to investigate the ionic and fluoride concentrations in borehole water and its associated health risk potentials to residents of Makurdi town and its environs, Benue state, Nigeria. Multivariate statistical techniques were for the first time used to explain the mechanisms of fluoride occurrence in groundwater in the study area. An aggregate of sixty-three (63) groundwater samples were retrieved from boreholes in twenty-one (21) diverse points within the study area and assessed for its physico-chemical composition with emphasis on fluoride content and health risk potentials following standard field and laboratory procedures. It was observed that fluoride content in the sampled water exceeded the stipulated safe limit of 1.5 mg/L in about 33.33% of the total samples and ranged from 0.34 to 2.06 mg/L with an average of 1.26 ± 0.41 mg/L. Moderate affirmative relationships were observed to exist between F- and TDS, F- and EC, F- and Cl-, and F- and NO3- in the water samples indicative of a common source pollution. Principal component analysis (PCA) revealed that high fluoride content in the water samples was associated with the dissolutions from quartzite and shale into the underlying deep aquifers as well as from contributions from anthropogenic activities including fertilizer and pesticide uses. Fluoride risk assessment indicated that the hazard quotient (HQ) for ingestion of fluoride laden water exceeded the threshold value in 66.7, 71.4, 52.4, and 9.5% of the samples for infants, children, teenagers, and adults respectively. It was found that multivariate statistical procedures such as PCA and correlation analysis (CA) are capable of establishing the relationship among groundwater pollutants, while hierarchical cluster analysis (HCA) was found suitable for explaining the likely sources/processes of pollutant enrichment in the groundwater. It is recommended that the findings of this study would serve as a basis for policy makers and regulatory bodies towards ameliorating the menace of groundwater contamination within the study area.