Displaying all 4 publications

Abstract:
Sort:
  1. Chuah LF, Nawaz A, Dailin DJ, Oloruntobi O, Habila MA, Tong WY, et al.
    Chemosphere, 2023 Oct;337:139293.
    PMID: 37369285 DOI: 10.1016/j.chemosphere.2023.139293
    Crude oil pollution is one of the most serious environmental issues today, and the clean-up procedure is perhaps the most difficult. Within one to three weeks, the vast majority of oil bacteria may degrade approximately 60% of the crude oil, leaving approximately 40% intact. The by-product metabolites produced during the breakdown of oil are essentially organic molecules in nature. These metabolites inhibit its enzymes, preventing the oil bacteria from further degrading the oil. By combining a variety of different oils with heterotrophic bacteria in a bioreactor, the rate of crude oil biodegradation was accelerated. In this study, two strains of oil-resistant, heterotrophic bacteria (OG1 and OG2-Erythrobacter citreus) and a bacterium that uses hydrocarbons (AR3-Pseudomonas pseudoalcaligenes) were used. Gas chromatography-mass spectroscopy was used to investigate the effectiveness of this consortium of symbiotic bacteria in the biodegradation of crude oil. According to gravimetric and gas chromatography analyses, the consortium bacteria digested 69.6% of the crude oil in the bioreactor, while the AR3 single strain was only able to destroy 61.9% of it. Under the same experimental conditions, consortium bacteria degraded approximately 84550.851 ppb (96.3%) of 16 aliphatic hydrocarbons and 9333.178 ppb (70.5%) of 16 aromatic hydrocarbons in the bioreactor. It may be inferred that the novel consortium of symbiotic bacteria accelerated the biodegradation process and had great potential for use in increasing the bioremediation of hydrocarbon-contaminated locations.
  2. Oloruntobi O, Chuah LF, Mokhtar K, Gohari A, Rady A, Abo-Eleneen RE, et al.
    Environ Res, 2024 Jan 01;240(Pt 2):117353.
    PMID: 37821061 DOI: 10.1016/j.envres.2023.117353
    This study analyzes the impact of ASEAN's goal of achieving carbon neutrality by 2050 on climate change and coastal ecosystems by examining carbon emissions and energy usage from 2019 to 2050 using different scenarios to reduce emissions and meet global temperature goals. This research proposes strategies to reduce carbon emissions and mitigate climate change effects on coastal ecosystems, focusing on evaluating CO2 emissions from ASEAN's coastal shipping sector. Geospatial data was used to analyze ship activity and develop carbon neutrality strategies. Various sources are used to gather data, including the Maritime Portal, exact Earth AIS, FASA and GFW. This study finds that container ships emitted 13.7 × 106 t of CO2 in 2019, with the transportation sector contributing 3.8% of the total greenhouse gas in 2020. Without regulations, CO2 emissions could increase fourfold by 2050. The study recommends implementing policies such as adopting clean fuels, energy efficiency standards and fuel-related regulations to reduce CO2 emissions by 65-80% by 2050. It also emphasizes the importance of cleaner technologies, regulatory considerations and collaboration, which would have positive implications for coastal ecosystems. This study is beneficial to professionals in the maritime and shipping industries, policy makers, environmental consultants, sustainability specialists, and international organizations.
  3. Mokhtar K, Chuah LF, Abdullah MA, Oloruntobi O, Ruslan SMM, Albasher G, et al.
    Environ Res, 2023 Dec 15;239(Pt 2):117314.
    PMID: 37805186 DOI: 10.1016/j.envres.2023.117314
    Coastal ecosystems are facing heightened risks due to human-induced climate change, including rising water levels and intensified storm events. Accurate bathymetry data is crucial for assessing the impacts of these threats. Traditional data collection methods can be cost-prohibitive. This study investigates the feasibility of using freely accessible Landsat and Sentinel satellite imagery to estimate bathymetry and its correlation with hydrographic chart soundings in Port Klang, Malaysia. Through analysis of the blue and green spectral bands from the Landsat 8 and Sentinel 2 datasets, a bathymetry map of Port Klang's seabed is generated. The precision of this derived bathymetry is evaluated using statistical metrics like Root Mean Square Error (RMSE) and the coefficient of determination. The results reveal a strong statistical connection (R2 = 0.9411) and correlation (R2 = 0.7958) between bathymetry data derived from hydrographic chart soundings and satellite imagery. This research not only advances our understanding of employing Landsat imagery for bathymetry assessment but also underscores the significance of such assessments in the context of climate change's impact on coastal ecosystems. The primary goal of this research is to contribute to the comprehension of Landsat imagery's utility in bathymetry evaluation, with the potential to enhance safety protocols in seaport terminals and provide valuable insights for decision-making concerning the management of coastal ecosystems amidst climate-related challenges. The findings of this research have practical implications for a wide range of stakeholders involved in coastal management, environmental protection, climate adaptation and disaster preparedness.
  4. Azmi MA, Mokhtar K, Osnin NA, Razali Chan S, Albasher G, Ali A, et al.
    Environ Res, 2023 Dec 01;238(Pt 1):117074.
    PMID: 37678506 DOI: 10.1016/j.envres.2023.117074
    Coastal ecosystems play an important part in mitigating the effects of climate change. Coastal ecosystems are becoming more susceptible to climate change impacts due to human activities and maritime accidents. The global shipping industry, especially in Southeast Asia, has witnessed numerous accidents, particularly involving passenger ferries, resulting in injuries and fatalities in recent years. In order to mitigate the impact of climate change on coastal ecosystems, this study aimed to evaluate the relationship between employees' perceptions of safety criteria and their own safety behaviour on Langkawi Island, Malaysia. A straightforward random sampling technique was employed to collect data from 112 ferry employees aboard Malaysian-registered passenger boats by administering questionnaires. The findings shed light on the strong connection between providing safety instructions for passengers and safety behaviour among ferry workers. Safety instructions should contain climate-related information to successfully address the effects of climate change. The instructions might include guidance on responding to extreme weather events and understanding the potential consequences of sea-level rise on coastal communities. The ferry company staff should also expand their safe behaviour concept to include training and preparation for climate-related incidents. The need to recognise the interconnectedness between climate change, ferry safety and the protection of coastal ecosystems is emphasised in this study. The findings can be utilised by policymakers, regulatory agencies and ferry operators to design holistic policies that improve safety behaviour, minimise maritime mishaps and preserve the long-term sustainability of coastal ecosystems in the face of difficulties posed by climate change.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links