A new sesquiterpene, scodopin, and a mixture of three tryptamine-type alkaloids, scorodocarpines A-C, were isolated from the fruits of Scorodocarpus borneensis, together with a known hemisynthetic sesquiterpene, cadalene-beta-carboxylic acid, which was isolated from the bark. The structures of the new compounds were elucidated by interpretation of spectral data, especially tandem mass spectrometry for the alkaloid mixture.
Nine 3,4-secoapotirucallanes, argentinic acids A-I, were isolated from the bark of Aglaia argentea and transformed to their methyl esters 1-9. The structures were determined by spectral and chemical means. Compounds 1-8 showed moderate cytotoxic activity against KB cells (IC50 1.0-3.5 microg/mL).
Microtubule disassembly inhibitory properties have been established for the known polyisoprenylated benzophenones xanthochymol (1a) and guttiferone E (1b). The compounds were isolated from the fruits of Garcinia pyrifera collected in Malaysia. A structure-activity relationship study, including natural and semisynthetic derivatives, delineated some structural features necessary for the interaction with tubulin within this compound class.
Four complex flavanones, kurziflavolactones A [2], B [3], C [4], and D [5] and a complex chalcone 6 with an unprecedented carbon side chain on the flavanone or chalcone A ring have been isolated from a Malaysian plant, Cryptocarya kurzii (Lauraceae). Their structures were determined by extensive spectroscopic analysis, especially 2D nmr experiments. Compounds 3 and 6 showed slight cytotoxicity against KB cells, with IC50 values of 4 and 15 micrograms/ml, respectively. A biosynthetic pathway for the formation of these compounds is suggested.
Bioassay-guided fractionation of an ethyl acetate extract of Fissistigma lanuginosum led to the isolation of the known chalcone pedicin [1], which inhibited tubulin assembly into microtubules (IC50 value of 300 microM). From the same EtOAc fraction, two new condensed chalcones, fissistin [2] and isofissistin [3], which showed cytotoxicity against KB cells, were also obtained, together with the inactive dihydropedicin [4] and 6,7-dimethoxy-5,8-dihydroxyflavone [5]. In addition, the aminoquinones 6, 8, and 9 were isolated from the alkaloid extract. These compounds were artifacts, prepared by treatment of 1, 4, and 2, respectively, with NH4OH. The structures of the new compounds were elucidated by spectral methods, especially 2D nmr.
Bioassay-guided fractionation of the extracts of Zieridium pseudobtusifolium and Acronychia porteri led to the isolation of 5,3'-dihydroxy-3,6,7,8,4'-pentamethoxyflavone [1], which showed activity against (KB) human nasopharyngeal carcinoma cells (IC50 0.04 micrograms/ml) and inhibited tubulin assembly into microtubules (IC50 12 microM). Two other known flavonols, digicitrin [2] and 5-hydroxy-3,6,7,8,3',4'-hexamethoxyflavone [5], were also isolated together with three new ones, 3-O-demethyldigicitrin [3], 3,5,3'-trihydroxy-6,7,8,4'-tetramethoxyflavone [4], and 3,5-dihydroxy-6,7,8,3',4'-pentamethoxyflavone [6]. All of these flavonols showed cytotoxic activity against KB cells.