Displaying all 2 publications

Abstract:
Sort:
  1. Ng ZY, Wong JY, Panneerselvam J, Madheswaran T, Kumar P, Pillay V, et al.
    Colloids Surf B Biointerfaces, 2018 Dec 01;172:51-59.
    PMID: 30134219 DOI: 10.1016/j.colsurfb.2018.08.027
    Curcumin a component of turmeric, which is derived from Curcuma longa is used as a colouring agent and as a dietary spice for centuries. Extensive studies have been done on the anti-inflammatory activity of curcumin along with its molecular mechanism involving different signalling pathways. However, the physicochemical and biological properties such as poor solubility and rapid metabolism of curcumin have led to low bioavailability and hence limits its application. Current therapies for asthma such as bronchodilators and inhaled corticosteroids (ICS) are aimed at controlling disease symptoms and prevent asthma exacerbation. However, this approach requires lifetime therapy and is associated with a constellation of side effects. This creates a clear unmet medical need and there is an urgent demand for new and more-effective treatments. The present study is aimed to formulate liposomes containing curcumin and evaluate for its anti-inflammatory effects on lipopolysaccharide (LPS)-induced inflammation on BCi-NS1.1 cell line. Curcumin and salbutamol liposomes were formulated using lipid hydration method. The prepared liposomes were characterized in terms of particle size, zeta potential, encapsulation efficiency and in-vitro release profile. The liposomes were tested on BCI-NS1.1 cell line to evaluate its anti-inflammatory properties. The various pro-inflammatory markers studied were Interleukin-6 (IL-6), Interleukin-8 (IL-8), Interleukin-1β (IL-1β) and Tumour Necrosis Factor-a (TNF-a). Additionally, molecular mechanics simulations were used to elucidate the positioning, energy minimization, and aqueous dispersion of the liposomal architecture involving lecithin and curcumin. The prepared curcumin formulation showed an average size and zeta potential of 271.3 ± 3.06 nm and -61.0 mV, respectively. The drug encapsulation efficiency of liposomal curcumin is 81.1%. Both curcumin-loaded liposomes formulation (1 μg/mL, 5 μg/mL) resulted in significant (p 
  2. Jin-Ying Wong, Yin Ng Z, Mehta M, Shukla SD, Panneerselvam J, Madheswaran T, et al.
    Nanomedicine (Lond), 2020 12;15(30):2955-2970.
    PMID: 33252322 DOI: 10.2217/nnm-2020-0260
    Aim: In this study, curcumin was encapsulated in niosomes (Nio-Curc) to increase its effectiveness for the treatment of asthma. Materials & methods: The formulation underwent various physicochemical characterization experiments, an in vitro release study, molecular simulations and was evaluated for in vitro anti-inflammatory activity. Results: Results showed that Nio-Curc had a mean particle size of 284.93 ± 14.27 nm, zeta potential of -46.93 and encapsulation efficacy of 99.62%, which demonstrates optimized physicochemical characteristics. Curcumin release in vitro could be sustained for up to 24 h. Additionally, Nio-Curc effectively reduced mRNA transcript expression of pro-inflammatory markers; IL-6, IL-8, IL-1β and TNF-α in immortalized human airway basal cell line (BCi-NS1.1). Conclusion: In this study, we have demonstrated that Nio-Curc mitigated the mRNA expression of pro-inflammatory markers in an in vitro study, which could be applied to treatment of asthma with further studies.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links