Displaying all 2 publications

Abstract:
Sort:
  1. Venkatramanan M, Sankar Ganesh P, Senthil R, Akshay J, Veera Ravi A, Langeswaran K, et al.
    ACS Omega, 2020 Oct 13;5(40):25605-25616.
    PMID: 33073086 DOI: 10.1021/acsomega.0c02483
    Chromobacterium violaceum (C. violaceum) is a Gram-negative, rod-shaped facultatively anaerobic bacterium implicated with recalcitrant human infections. Here, we evaluated the anti-QS and antibiofilm activities of ethyl acetate extracts of Passiflora edulis (P. edulis) on the likely inactivation of acyl-homoserine lactone (AHL)-regulated molecules in C. violaceum both by in vitro and in silico analyses. Our investigations showed that the sub-MIC levels were 2, 1, and 0.5 mg/mL, and the concentrations showed a marked reduction in violacein pigment production by 75.8, 64.6, and 35.2%. AHL quantification showed 72.5, 52.2, and 35.9% inhibitions, inhibitions of EPS production (72.8, 36.5, and 25.9%), and reductions in biofilm formation (90.7, 69.4, and 51.8%) as compared to a control. Light microscopy and CLSM analysis revealed dramatic reduction in the treated biofilm group as compared to the control. GC-MS analysis showed 20 major peaks whose chemical structures were docked as the CviR ligand. The highest docking score was observed for hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl) ethyl ester bonds in the active site of CviR with a binding energy of -8.825 kcal/mol. Together, we found that hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl) ethyl ester remarkably interacted with CviR to inhibit the QS system. Hence, we concluded that hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl) ethyl ester of P. edulis could likely be evaluated for treating C. violaceum infections.
  2. Kesavan A, Rajakumar T, Karunanidhi M, Ravi A, Vivekanand PA, Kamaraj P, et al.
    Heliyon, 2024 Jan 30;10(2):e24728.
    PMID: 38312566 DOI: 10.1016/j.heliyon.2024.e24728
    The study examined various properties of synthesized copolyesters PESC and PPSC. Inherent viscosities of the copolyesters, measured in 1,4-dioxane at 32 °C, were 0.65 dL/g for PESC and 0.73 dL/g for PPSC. Fourier-Transform Infrared Spectroscopy (FT-IR) revealed distinct absorption bands associated with ester carbonyl stretching, C-H bending vibration, C-H group symmetry stretching, and C-O stretching vibrations. 1H and 13C Nuclear magnetic Resonance (NMR) spectroscopy were used to identify specific protons and carbon groups in the polymer chain, revealing the molecular structure of the copolyesters. Differential Scanning Calorimetry (DSC) identified the glass transition, melting, and decomposition temperatures for both copolyesters, indicating variations in the crystalline nature of the copolymers. XRD Spectral studies further elaborated on the crystalline nature, indicating that PPSC is less amorphous than PESC. Biodegradation analysis showed that PESC degrades more quickly than PPSC, with degradation decreasing as the number of methylene groups increase. Scanning Electron Microscopy (SEM) images depicted the surface morphology of the copolyesters before and after degradation, revealing a more roughened surface with pits post-degradation. These findings provide comprehensive insights into the structural and degradable properties of PESC and PPSC copolyesters.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links