Introduction: Elimination of viral hepatitis as a major public health threat by 2030 was announced by the Global Health Sector Strategy (GHSS) on viral hepatitis in 2016. Hepatitis C is one of the major causes of liver cirrhosis and liver cancer. Complications as a results of hepatitis C infection can be prevented as hepatitis C infection is now con-sidered as a curable disease with the availability of Direct Acting Agents (DAAs). However, the main barrier towards treating and curing all HCV infected patients is a high cost of DAAs. The treatment regime of hepatitis C infection in Malaysia is sofosbuvir and daclastavir, an NS5A inhibitor. Daclastavir was reported as inherently resistant to HCV GT 3. Thus, this study aimed to develop an assay to detect the resistance associated substitution (RAS) towards the NS5A inhibitor among HCV GT 3 infected patients. Methods: Samples for the study were obtained from various hospitals in Malaysia. The samples were collected from DAAs naïve HCV GT 3 infected patients. From the literature review, a specific assay was chosen with different sets of primers were selected for the study. The DNA sequences of NS5A region of HCV genome were submitted to the geno2pheno [HCV] resistance database by Max Planck Institut (MPI) Informatics to yield RAS. Results: Suitable primers were identified based on generated amplicons produced for the samples which NS5A region were successfully sequenced. Results were obtained based on the 213 codon generated from the population based Sanger sequencing. RAS/ RASs towards Daclastavir were produced and the susceptibility result towards the drug was generated. Conclusion: The assay was successfully optimised and able to generate drug resistance results towards Daclastavir which might have impacts on the duration of treatment and/or inclusion of ribavirin in managing HCV infected patients in Malaysia.
Introduction: Dengue virus (DENV), Zika virus (ZIKV) and Chikungunya virus (CHIKV) are Arboviruses that are transmitted by the same vector, Aedes aegypti. Dengue has become a global problem since the Second World War and is common in more than 110 countries. In Malaysia, dengue is a major disease burden as total economic costs to the country as a result of dengue is close to RM1.05 billion in 2010 and estimated to rise to 1.3 billion by 2020. Apart from Dengue, Zika and Chikungunya are the other important mosquito borne diseases in Malaysia. The aim of this study was to develop a multiplex real-time assay for simultaneous detection of DENV, ZIKV and CHIKV in clinical specimens. Methods: The published singleplex protocols were used with key modifications to implement a triplex assay. A one-step multiplex real-time RT-PCR assay was developed that can simultaneously detect RNA of DENV, ZIKV and CHIKV with good performance for a routine diagnostic use. The assay was evaluated for inter- and intra-reproducibility by mean CT value. The diagnostic sensitivity was tested with 135 archived samples which had been defined positive or negative by routine singleplex assays. Whole blood, plasma and urines were used in this study. Results: Intra- and inter-reproducibility and sensitivity varied from 0.10% to 4.73% and from 0.45% to 5.98% for each virus respectively. The specificity of detection was 100%. The multiplex real-time RT-PCR assay showed concordance with test results performed by routine singleplex assays. No cross reaction was observed for any of the clinical samples. Conclusion: The development of a rapid, sensitive and specific molecular assay for DENV, ZIKV and CHIKV infections will produce a greater diagnostic capacity in our laboratory. This multiplex approach is cost effective and robust with the concurrent detection of 3 viruses of public health concern.
Introduction: Poliomyelitis is an incapacitating and highly infectious disease which effect mostly young children. It is caused by one of the three serotypes of polioviruses (PV) and transmitted through faecal-oral route hence making the disease quite pertinent to the lower and middle class society or under-immunized population. This surveillance is one of the strategy included by WHO in the “Eradication, Integration and Certification: The Endgame Strategy 2019-2023” as a supplement to AFP surveillance by which it could be more sensitive to detect low circulation of WPV and circulating vaccine derived poliovirus (cVDPV). Methods: Routine collection and testing of representative environmental surveillance are carried out in the National Polio Laboratory. The specimens are collected from designated locations draining target populations at increased risk of poliovirus transmission using the grab method once a month and processed according to WHO standard protocol. Polioviruses were identified by real time reverse transcriptase polymerase chain reaction (rRT-PCR) for intratypic differentiation (ITD) and vaccine derived poliovirus (VDPV) whereas non-polio enteroviruses (NPEVs) were identified by PCR and sequencing. Results: From 2012 to 2019, results showed various isolation of PVs and NPEVs. A total of 12 sewage disposal plants located in urban highly populated areas in Kuala Lumpur (3), Selangor (5), Sabah (3 ) and Negeri Sembilan (1) were investigated. A total of 22 Sabin-like PVs were isolated consisting of 3 PV1, 8 PV2 and 11 PV3 thus indicated that in Malaysia even though PVs were existed in environment, but all of them were Sabin-Like viruses and no evidence of imported WPV or VDPV in the sampling sites. Conclusion: Even though Malaysia has been declared as WPV free country in 2000, Environmental Surveillance is very important and crucial in detecting the introduction and silent circulation of WPV and cVDPV before the virus reaches the community.
Manisya Zauri Abdul Wahid, Tengku Rogayah T. Abd. Rashid, Hariyati Md. Ali, Hamadah Mohd Shafiff, Mohd. Shamsul Samsuddin, Syarifah Nur Aisyatun Syed Mohd Salleh, et al.
Introduction:Echoviruses are Enteroviruses (HEVs) that infect millions of people annually worldwide, primarily paediatrics. These viruses are frequently associated with outbreaks and sporadic cases of viral meningitis, enceph-alitis, paralysis, myocarditis, severe systemic infections; and hand-foot-mouth disease. This study is a retrospective study to identify Echovirus serotypes circulating in Malaysia from January 2014 to June 2019, and their roles in outbreak prediction. This study investigated the Echovirus serotypes circulating in Malaysia from January 2014 to June 2019. Methods: A total of 13,855 inpatient samples consisting respiratory secretion, stool, tissue and body fluid from around the country were received by the Virology Unit, Institute for Medical Research between January 2014 and June 2019. The presence of HEV’s RNA was detected by qPCR. The identified positive sample was further isolated by cell culture and identified by Immunofluorescence Assay (IFA). The IFA positive samples were subjected to amplification of partial VP4 gene by RT-PCR, and proceeded to Sanger sequencing for phylogenetic analysis by using ChromasPro and MEGA Software. The sequence generated were analysed by BLAST to confirm the sequence serotypes generated. Results: Echovirus genome was detected in 0.35% (37/10,681) of the patients. The circulating Echovirus subtypes in Malaysia between January 2014 and June 2019 were Echo-11 (43.2%; 16/37), followed by Echo-6 (16.2%; 6/37); 8.1% (3/37) of Echo-7 and Echo-13, respectively. Meanwhile, other types of Echoviruses (24.3%; 9/37) such as Echo 3-5, Echo-14, Echo-16, Echo-18, Echo-25 and Echo-30 were also detected in this study. Conclusion: In this study, it has been found that Echovirus 11 serotype is the most predominant Echovirus serotype circulating in Malaysia between January 2014 and June 2019. It has been reported to cause severe diseases, such as aseptic meningitis. Therefore, the identification of circulating serotypes of Echovirus is critical to predict the Echovi-rus outbreak and to reduce the risk of developing severe disease in Malaysia.