Displaying all 3 publications

Abstract:
Sort:
  1. Md Hatta MA, Ghosh S, Athiyannan N, Richardson T, Steuernagel B, Yu G, et al.
    Mol Plant Microbe Interact, 2020 Nov;33(11):1286-1298.
    PMID: 32779520 DOI: 10.1094/MPMI-01-20-0018-R
    In the last 20 years, severe wheat stem rust outbreaks have been recorded in Africa, Europe, and Central Asia. This previously well controlled disease, caused by the fungus Puccinia graminis f. sp. tritici, has reemerged as a major threat to wheat cultivation. The stem rust (Sr) resistance gene Sr22 encodes a nucleotide-binding and leucine-rich repeat receptor which confers resistance to the highly virulent African stem rust isolate Ug99. Here, we show that the Sr22 gene is conserved among grasses in the Triticeae and Poeae lineages. Triticeae species contain syntenic loci with single-copy orthologs of Sr22 on chromosome 7, except Hordeum vulgare, which has experienced major expansions and rearrangements at the locus. We also describe 14 Sr22 sequence variants obtained from both Triticum boeoticum and the domesticated form of this species, T. monococcum, which have been postulated to encode both functional and nonfunctional Sr22 alleles. The nucleotide sequence analysis of these alleles identified historical sequence exchange resulting from recombination or gene conversion, including breakpoints within codons, which expanded the coding potential at these positions by introduction of nonsynonymous substitutions. Three Sr22 alleles were transformed into wheat cultivar Fielder and two postulated resistant alleles from Schomburgk (hexaploid wheat introgressed with T. boeoticum segment carrying Sr22) and T. monococcum accession PI190945, respectively, conferred resistance to P. graminis f. sp. tritici race TTKSK, thereby unequivocally confirming Sr22 effectiveness against Ug99. The third allele from accession PI573523, previously believed to confer susceptibility, was confirmed as nonfunctional against Australian P. graminis f. sp. tritici race 98-1,2,3,5,6.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
  2. Kamath N, Borzych-Dużałka D, Kaur A, Neto G, Arbeiter K, Yap YC, et al.
    Pediatr Nephrol, 2023 Dec;38(12):4111-4118.
    PMID: 37405492 DOI: 10.1007/s00467-023-05995-x
    BACKGROUND: The guidelines for training of patients and caregivers to perform home peritoneal dialysis (PD) uniformly include recommendations pertaining to the prevention of peritonitis. The objective of this study conducted by the International Pediatric Peritoneal Dialysis Network (IPPN) was to investigate the training practices for pediatric PD and to evaluate the impact of these practices on the peritonitis and exit-site infection (ESI) rate.

    METHODS: A questionnaire regarding details of the PD program and training practices was distributed to IPPN member centers, while peritonitis and ESI rates were either derived from the IPPN registry or obtained directly from the centers. Poisson univariate and multivariate regression was used to determine the training-related peritonitis and ESI risk factors.

    RESULTS: Sixty-two of 137 centers responded. Information on peritonitis and ESI rates were available from fifty centers. Training was conducted by a PD nurse in 93.5% of centers, most commonly (50%) as an in-hospital program. The median total training time was 24 hours, with a formal assessment conducted in 88.7% and skills demonstration in 71% of centers. Home visits were performed by 58% of centers. Shorter (

  3. Hatta MAM, Arora S, Ghosh S, Matny O, Smedley MA, Yu G, et al.
    Plant Biotechnol J, 2021 Feb;19(2):273-284.
    PMID: 32744350 DOI: 10.1111/pbi.13460
    In the last 20 years, stem rust caused by the fungus Puccinia graminis f. sp. tritici (Pgt), has re-emerged as a major threat to wheat and barley production in Africa and Europe. In contrast to wheat with 60 designated stem rust (Sr) resistance genes, barley's genetic variation for stem rust resistance is very narrow with only ten resistance genes genetically identified. Of these, only one complex locus consisting of three genes is effective against TTKSK, a widely virulent Pgt race of the Ug99 tribe which emerged in Uganda in 1999 and has since spread to much of East Africa and parts of the Middle East. The objective of this study was to assess the functionality, in barley, of cloned wheat Sr genes effective against race TTKSK. Sr22, Sr33, Sr35 and Sr45 were transformed into barley cv. Golden Promise using Agrobacterium-mediated transformation. All four genes were found to confer effective stem rust resistance. The barley transgenics remained susceptible to the barley leaf rust pathogen Puccinia hordei, indicating that the resistance conferred by these wheat Sr genes was specific for Pgt. Furthermore, these transgenic plants did not display significant adverse agronomic effects in the absence of disease. Cloned Sr genes from wheat are therefore a potential source of resistance against wheat stem rust in barley.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links