Displaying all 2 publications

Abstract:
Sort:
  1. Mishra S, Chaudhury P, Tripathy HK, Sahoo KS, Jhanjhi NZ, Hassan Elnour AA, et al.
    Digit Health, 2024;10:20552076241256732.
    PMID: 39165388 DOI: 10.1177/20552076241256732
    OBJECTIVE: The modern era of cognitive intelligence in clinical space has led to the rise of 'Medical Cognitive Virtual Agents' (MCVAs) which are labeled as intelligent virtual assistants interacting with users in a context-sensitive and ambient manner. They aim to augment users' cognitive capabilities thereby helping both patients and medical experts in providing personalized healthcare like remote health tracking, emergency healthcare and robotic diagnosis of critical illness, among others. The objective of this study is to explore the technical aspects of MCVA and their relevance in modern healthcare.

    METHODS: In this study, a comprehensive and interpretable analysis of MCVAs are presented and their impacts are discussed. A novel system framework prototype based on artificial intelligence for MCVA is presented. Architectural workflow of potential applications of functionalities of MCVAs are detailed. A novel MCVA relevance survey analysis was undertaken during March-April 2023 at Bhubaneswar, Odisha, India to understand the current position of MCVA in society.

    RESULTS: Outcome of the survey delivered constructive results. Majority of people associated with healthcare showed their inclination towards MCVA. The curiosity for MCVA in Urban zone was more than in rural areas. Also, elderly citizens preferred using MCVA more as compared to youths. Medical decision support emerged as the most preferred application of MCVA.

    CONCLUSION: The article established and validated the relevance of MCVA in modern healthcare. The study showed that MCVA is likely to grow in future and can prove to be an effective assistance to medical experts in coming days.

  2. Gupta R, Kanungo P, Dagdee N, Madhu G, Sahoo KS, Jhanjhi NZ, et al.
    Sensors (Basel), 2023 Feb 27;23(5).
    PMID: 36904822 DOI: 10.3390/s23052617
    With continuous advancements in Internet technology and the increased use of cryptographic techniques, the cloud has become the obvious choice for data sharing. Generally, the data are outsourced to cloud storage servers in encrypted form. Access control methods can be used on encrypted outsourced data to facilitate and regulate access. Multi-authority attribute-based encryption is a propitious technique to control who can access encrypted data in inter-domain applications such as sharing data between organizations, sharing data in healthcare, etc. The data owner may require the flexibility to share the data with known and unknown users. The known or closed-domain users may be internal employees of the organization, and unknown or open-domain users may be outside agencies, third-party users, etc. In the case of closed-domain users, the data owner becomes the key issuing authority, and in the case of open-domain users, various established attribute authorities perform the task of key issuance. Privacy preservation is also a crucial requirement in cloud-based data-sharing systems. This work proposes the SP-MAACS scheme, a secure and privacy-preserving multi-authority access control system for cloud-based healthcare data sharing. Both open and closed domain users are considered, and policy privacy is ensured by only disclosing the names of policy attributes. The values of the attributes are kept hidden. Characteristic comparison with similar existing schemes shows that our scheme simultaneously provides features such as multi-authority setting, expressive and flexible access policy structure, privacy preservation, and scalability. The performance analysis carried out by us shows that the decryption cost is reasonable enough. Furthermore, the scheme is demonstrated to be adaptively secure under the standard model.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links