Displaying publications 1 - 20 of 382 in total

Abstract:
Sort:
  1. Razzaque MA, Javadi SS, Coulibaly Y, Hira MT
    Sensors (Basel), 2014 Dec 29;15(1):440-64.
    PMID: 25551485 DOI: 10.3390/s150100440
    Wireless body sensor networks (WBSNs) for healthcare and medical applications are real-time and life-critical infrastructures, which require a strict guarantee of quality of service (QoS), in terms of latency, error rate and reliability. Considering the criticality of healthcare and medical applications, WBSNs need to fulfill users/applications and the corresponding network's QoS requirements. For instance, for a real-time application to support on-time data delivery, a WBSN needs to guarantee a constrained delay at the network level. A network coding-based error recovery mechanism is an emerging mechanism that can be used in these systems to support QoS at very low energy, memory and hardware cost. However, in dynamic network environments and user requirements, the original non-adaptive version of network coding fails to support some of the network and user QoS requirements. This work explores the QoS requirements of WBSNs in both perspectives of QoS. Based on these requirements, this paper proposes an adaptive network coding-based, QoS-aware error recovery mechanism for WBSNs. It utilizes network-level and user-/application-level information to make it adaptive in both contexts. Thus, it provides improved QoS support adaptively in terms of reliability, energy efficiency and delay. Simulation results show the potential of the proposed mechanism in terms of adaptability, reliability, real-time data delivery and network lifetime compared to its counterparts.
  2. El-Sayed AM, Hamzaid NA, Abu Osman NA
    Sensors (Basel), 2014;14(12):23724-41.
    PMID: 25513823 DOI: 10.3390/s141223724
    Alternative sensory systems for the development of prosthetic knees are being increasingly highlighted nowadays, due to the rapid advancements in the field of lower limb prosthetics. This study presents the use of piezoelectric bimorphs as in-socket sensors for transfemoral amputees. An Instron machine was used in the calibration procedure and the corresponding output data were further analyzed to determine the static and dynamic characteristics of the piezoelectric bimorph. The piezoelectric bimorph showed appropriate static operating range, repeatability, hysteresis, and frequency response for application in lower prosthesis, with a force range of 0-100 N. To further validate this finding, an experiment was conducted with a single transfemoral amputee subject to measure the stump/socket pressure using the piezoelectric bimorph embedded inside the socket. The results showed that a maximum interface pressure of about 27 kPa occurred at the anterior proximal site compared to the anterior distal and posterior sites, consistent with values published in other studies. This paper highlighted the capacity of piezoelectric bimorphs to perform as in-socket sensors for transfemoral amputees. However, further experiments are recommended to be conducted with different amputees with different socket types.
  3. Yap AC, Mahamad UA, Lim SY, Kim HJ, Choo YM
    Sensors (Basel), 2014 Nov 10;14(11):21140-50.
    PMID: 25390405 DOI: 10.3390/s141121140
    Homocysteine and methylmalonic acid are important biomarkers for diseases associated with an impaired central nervous system (CNS). A new chemoassay utilizing coumarin-based fluorescent probe 1 to detect the levels of homocysteine is successfully implemented using Parkinson's disease (PD) patients' blood serum. In addition, a rapid identification of homocysteine and methylmalonic acid levels in blood serum of PD patients was also performed using the liquid chromatography-mass spectrometry (LC-MS). The results obtained from both analyses were in agreement. The new chemoassay utilizing coumarin-based fluorescent probe 1 offers a cost- and time-effective method to identify the biomarkers in CNS patients.
  4. Ooi L, Heng LY, Mori IC
    Sensors (Basel), 2015;15(2):2354-68.
    PMID: 25621608 DOI: 10.3390/s150202354
    Biosensors fabricated with whole-cell bacteria appear to be suitable for detecting bioavailability and toxicity effects of the chemical(s) of concern, but they are usually reported to have drawbacks like long response times (ranging from hours to days), narrow dynamic range and instability during long term storage. Our aim is to fabricate a sensitive whole-cell oxidative stress biosensor which has improved properties that address the mentioned weaknesses. In this paper, we report a novel high-throughput whole-cell biosensor fabricated by immobilizing roGFP2 expressing Escherichia coli cells in a k-carrageenan matrix, for the detection of oxidative stress challenged by metalloid compounds. The E. coli roGFP2 oxidative stress biosensor shows high sensitivity towards arsenite and selenite, with wide linear range and low detection limit (arsenite: 1.0 × 10(-3)-1.0 × 10(1) mg·L(-1), LOD: 2.0 × 10(-4) mg·L(-1); selenite: 1.0 × 10(-5)-1.0 × 10(2) mg·L(-1), LOD: 5.8 × 10(-6) mg·L(-1)), short response times (0-9 min), high stability and reproducibility. This research is expected to provide a new direction in performing high-throughput environmental toxicity screening with living bacterial cells which is capable of measuring the bioavailability and toxicity of environmental stressors in a friction of a second.
  5. Zafar Q, Ahmad Z, Sulaiman K
    Sensors (Basel), 2015;15(1):965-78.
    PMID: 25574936 DOI: 10.3390/s150100965
    We present a ternary blend-based bulk heterojunction ITO/PEDOT:PSS/PFO-DBT: MEH-PPV:PC71BM/LiF/Al photodetector. Enhanced optical absorption range of the active film has been achieved by blending two donor components viz. poly[2,7-(9,9-di-octyl-fluorene)-alt-4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole] (PFO-DBT) and poly(2-methoxy-5(2'-ethylhexyloxy) phenylenevinylene (MEH-PPV) along with an acceptor component, i.e., (6,6)-phenyl-C71 hexnoic acid methyl ester. The dependency of the generation rate of free charge carriers in the organic photodetector (OPD) on varied incident optical power density was investigated as a function of different reverse biasing voltages. The photocurrent showed significant enhancement as the intensity of light impinging on active area of OPD is increased. The ratio of Ilight to Idark of fabricated device at -3 V was ~3.5 × 10(4). The dynamic behaviour of the OPD under on/off switching irradiation revealed that sensor exhibits quick response and recovery time of ∼800 ms and 500 ms, respectively. Besides reliability and repeatability in the photoresponse characteristics, the cost-effective and eco-friendly fabrication is the added benefit of the fabricated OPD.
  6. Lim WH, Yap YK, Chong WY, Ahmad H
    Sensors (Basel), 2014;14(12):24329-37.
    PMID: 25526358 DOI: 10.3390/s141224329
    The optical characteristics of graphene oxide (GO) were explored to design and fabricate a GO-based optical humidity sensor. GO film was coated onto a SU8 polymer channel waveguide using the drop-casting technique. The proposed sensor shows a high TE-mode absorption at 1550 nm. Due to the dependence of the dielectric properties of the GO film on water content, this high TE-mode absorption decreases when the ambient relative humidity increases. The proposed sensor shows a rapid response (<1 s) to periodically interrupted humid air flow. The transmission of the proposed sensor shows a linear response of 0.553 dB/% RH in the range of 60% to 100% RH.
  7. Frischer R, Penhaker M, Krejcar O, Kacerovsky M, Selamat A
    Sensors (Basel), 2014;14(12):23563-23580.
    PMID: 25494352
    Precise temperature measurement is essential in a wide range of applications in the medical environment, however the regarding the problem of temperature measurement inside a simple incubator, neither a simple nor a low cost solution have been proposed yet. Given that standard temperature sensors don't satisfy the necessary expectations, the problem is not measuring temperature, but rather achieving the desired sensitivity. In response, this paper introduces a novel hardware design as well as the implementation that increases measurement sensitivity in defined temperature intervals at low cost.
  8. Uddin SM, Ibrahim F, Sayad AA, Thiha A, Pei KX, Mohktar MS, et al.
    Sensors (Basel), 2015;15(3):5376-89.
    PMID: 25751077 DOI: 10.3390/s150305376
    In recent years, many improvements have been made in foodborne pathogen detection methods to reduce the impact of food contamination. Several rapid methods have been developed with biosensor devices to improve the way of performing pathogen detection. This paper presents an automated endpoint detection system for amplicons generated by loop mediated isothermal amplification (LAMP) on a microfluidic compact disk platform. The developed detection system utilizes a monochromatic ultraviolet (UV) emitter for excitation of fluorescent labeled LAMP amplicons and a color sensor to detect the emitted florescence from target. Then it processes the sensor output and displays the detection results on liquid crystal display (LCD). The sensitivity test has been performed with detection limit up to 2.5 × 10(-3) ng/µL with different DNA concentrations of Salmonella bacteria. This system allows a rapid and automatic endpoint detection which could lead to the development of a point-of-care diagnosis device for foodborne pathogens detection in a resource-limited environment.
  9. Kaiwartya O, Kumar S, Lobiyal DK, Abdullah AH, Hassan AN
    Sensors (Basel), 2014;14(12):22342-71.
    PMID: 25429415 DOI: 10.3390/s141222342
    Geographic routing is one of the most investigated themes by researchers for reliable and efficient dissemination of information in Vehicular Ad Hoc Networks (VANETs). Recently, different Geographic Distance Routing (GEDIR) protocols have been suggested in the literature. These protocols focus on reducing the forwarding region towards destination to select the Next Hop Vehicles (NHV). Most of these protocols suffer from the problem of elevated one-hop link disconnection, high end-to-end delay and low throughput even at normal vehicle speed in high vehicle density environment. This paper proposes a Geographic Distance Routing protocol based on Segment vehicle, Link quality and Degree of connectivity (SLD-GEDIR). The protocol selects a reliable NHV using the criteria segment vehicles, one-hop link quality and degree of connectivity. The proposed protocol has been simulated in NS-2 and its performance has been compared with the state-of-the-art protocols: P-GEDIR, J-GEDIR and V-GEDIR. The empirical results clearly reveal that SLD-GEDIR has lower link disconnection and end-to-end delay, and higher throughput as compared to the state-of-the-art protocols. It should be noted that the performance of the proposed protocol is preserved irrespective of vehicle density and speed.
  10. Ibitoye MO, Hamzaid NA, Zuniga JM, Hasnan N, Wahab AK
    Sensors (Basel), 2014;14(12):22940-70.
    PMID: 25479326 DOI: 10.3390/s141222940
    The research conducted in the last three decades has collectively demonstrated that the skeletal muscle performance can be alternatively assessed by mechanomyographic signal (MMG) parameters. Indices of muscle performance, not limited to force, power, work, endurance and the related physiological processes underlying muscle activities during contraction have been evaluated in the light of the signal features. As a non-stationary signal that reflects several distinctive patterns of muscle actions, the illustrations obtained from the literature support the reliability of MMG in the analysis of muscles under voluntary and stimulus evoked contractions. An appraisal of the standard practice including the measurement theories of the methods used to extract parameters of the signal is vital to the application of the signal during experimental and clinical practices, especially in areas where electromyograms are contraindicated or have limited application. As we highlight the underpinning technical guidelines and domains where each method is well-suited, the limitations of the methods are also presented to position the state of the art in MMG parameters extraction, thus providing the theoretical framework for improvement on the current practices to widen the opportunity for new insights and discoveries. Since the signal modality has not been widely deployed due partly to the limited information extractable from the signals when compared with other classical techniques used to assess muscle performance, this survey is particularly relevant to the projected future of MMG applications in the realm of musculoskeletal assessments and in the real time detection of muscle activity.
  11. Yunusa Z, Hamidon MN, Ismail A, Mohd Isa M, Yaacob MH, Rahmanian S, et al.
    Sensors (Basel), 2015;15(3):4749-65.
    PMID: 25730480 DOI: 10.3390/s150304749
    A double SAW resonator system was developed as a novel method for gas sensing applications. The proposed system was investigated for hydrogen sensing. Commercial Surface Acoustic Wave (SAW) resonators with resonance frequencies of 433.92 MHz and 433.42 MHz were employed in the double SAW resonator system configuration. The advantages of using this configuration include its ability for remote measurements, and insensitivity to vibrations and other external disturbances. The sensitive layer is composed of functionalized multiwalled carbon nanotubes and polyaniline nanofibers which were deposited on pre-patterned platinum metal electrodes fabricated on a piezoelectric substrate. This was mounted into the DSAWR circuit and connected in parallel. The sensor response was measured as the difference between the resonance frequencies of the SAW resonators, which is a measure of the gas concentration. The sensor showed good response towards hydrogen with a minimum detection limit of 1%.
  12. Al-Ta'ii HM, Mohd Amin Y, Periasamy V
    Sensors (Basel), 2015;15(3):4810-22.
    PMID: 25730484 DOI: 10.3390/s150304810
    Many types of materials such as inorganic semiconductors have been employed as detectors for nuclear radiation, the importance of which has increased significantly due to recent nuclear catastrophes. Despite the many advantages of this type of materials, the ability to measure direct cellular or biological responses to radiation might improve detector sensitivity. In this context, semiconducting organic materials such as deoxyribonucleic acid or DNA have been studied in recent years. This was established by studying the varying electronic properties of DNA-metal or semiconductor junctions when exposed to radiation. In this work, we investigated the electronics of aluminium (Al)/DNA/silicon (Si) rectifying junctions using their current-voltage (I-V) characteristics when exposed to alpha radiation. Diode parameters such as ideality factor, barrier height and series resistance were determined for different irradiation times. The observed results show significant changes with exposure time or total dosage received. An increased deviation from ideal diode conditions (7.2 to 18.0) was observed when they were bombarded with alpha particles for up to 40 min. Using the conventional technique, barrier height values were observed to generally increase after 2, 6, 10, 20 and 30 min of radiation. The same trend was seen in the values of the series resistance (0.5889-1.423 Ω for 2-8 min). These changes in the electronic properties of the DNA/Si junctions could therefore be utilized in the construction of sensitive alpha particle detectors.
  13. Habib ur Rehman M, Liew CS, Wah TY, Shuja J, Daghighi B
    Sensors (Basel), 2015 Feb 13;15(2):4430-69.
    PMID: 25688592 DOI: 10.3390/s150204430
    The staggering growth in smartphone and wearable device use has led to a massive scale generation of personal (user-specific) data. To explore, analyze, and extract useful information and knowledge from the deluge of personal data, one has to leverage these devices as the data-mining platforms in ubiquitous, pervasive, and big data environments. This study presents the personal ecosystem where all computational resources, communication facilities, storage and knowledge management systems are available in user proximity. An extensive review on recent literature has been conducted and a detailed taxonomy is presented. The performance evaluation metrics and their empirical evidences are sorted out in this paper. Finally, we have highlighted some future research directions and potentially emerging application areas for personal data mining using smartphones and wearable devices.
  14. Izadi D, Abawajy JH, Ghanavati S, Herawan T
    Sensors (Basel), 2015;15(2):2964-79.
    PMID: 25635417 DOI: 10.3390/s150202964
    The success of a Wireless Sensor Network (WSN) deployment strongly depends on the quality of service (QoS) it provides regarding issues such as data accuracy, data aggregation delays and network lifetime maximisation. This is especially challenging in data fusion mechanisms, where a small fraction of low quality data in the fusion input may negatively impact the overall fusion result. In this paper, we present a fuzzy-based data fusion approach for WSN with the aim of increasing the QoS whilst reducing the energy consumption of the sensor network. The proposed approach is able to distinguish and aggregate only true values of the collected data as such, thus reducing the burden of processing the entire data at the base station (BS). It is also able to eliminate redundant data and consequently reduce energy consumption thus increasing the network lifetime. We studied the effectiveness of the proposed data fusion approach experimentally and compared it with two baseline approaches in terms of data collection, number of transferred data packets and energy consumption. The results of the experiments show that the proposed approach achieves better results than the baseline approaches.
  15. Khalid Z, Fisal N, Rozaini M
    Sensors (Basel), 2014;14(12):24046-97.
    PMID: 25615737 DOI: 10.3390/s141224046
    Wireless Sensor Network (WSN) is leading to a new paradigm of Internet of Everything (IoE). WSNs have a wide range of applications but are usually deployed in a particular application. However, the future of WSNs lies in the aggregation and allocation of resources, serving diverse applications. WSN virtualization by the middleware is an emerging concept that enables aggregation of multiple independent heterogeneous devices, networks, radios and software platforms; and enhancing application development. WSN virtualization, middleware can further be categorized into sensor virtualization and network virtualization. Middleware for WSN virtualization poses several challenges like efficient decoupling of networks, devices and software. In this paper efforts have been put forward to bring an overview of the previous and current middleware designs for WSN virtualization, the design goals, software architectures, abstracted services, testbeds and programming techniques. Furthermore, the paper also presents the proposed model, challenges and future opportunities for further research in the middleware designs for WSN virtualization.
  16. Hannan MA, Hussein HA, Mutashar S, Samad SA, Hussain A
    Sensors (Basel), 2014;14(12):23843-70.
    PMID: 25615728 DOI: 10.3390/s141223843
    With the development of communication technologies, the use of wireless systems in biomedical implanted devices has become very useful. Bio-implantable devices are electronic devices which are used for treatment and monitoring brain implants, pacemakers, cochlear implants, retinal implants and so on. The inductive coupling link is used to transmit power and data between the primary and secondary sides of the biomedical implanted system, in which efficient power amplifier is very much needed to ensure the best data transmission rates and low power losses. However, the efficiency of the implanted devices depends on the circuit design, controller, load variation, changes of radio frequency coil's mutual displacement and coupling coefficients. This paper provides a comprehensive survey on various power amplifier classes and their characteristics, efficiency and controller techniques that have been used in bio-implants. The automatic frequency controller used in biomedical implants such as gate drive switching control, closed loop power control, voltage controlled oscillator, capacitor control and microcontroller frequency control have been explained. Most of these techniques keep the resonance frequency stable in transcutaneous power transfer between the external coil and the coil implanted inside the body. Detailed information including carrier frequency, power efficiency, coils displacement, power consumption, supplied voltage and CMOS chip for the controllers techniques are investigated and summarized in the provided tables. From the rigorous review, it is observed that the existing automatic frequency controller technologies are more or less can capable of performing well in the implant devices; however, the systems are still not up to the mark. Accordingly, current challenges and problems of the typical automatic frequency controller techniques for power amplifiers are illustrated, with a brief suggestions and discussion section concerning the progress of implanted device research in the future. This review will hopefully lead to increasing efforts towards the development of low powered, highly efficient, high data rate and reliable automatic frequency controllers for implanted devices.
  17. Ibrahim F, Thio TH, Faisal T, Neuman M
    Sensors (Basel), 2015;15(3):6947-95.
    PMID: 25806872 DOI: 10.3390/s150306947
    This paper reviews a number of biomedical engineering approaches to help aid in the detection and treatment of tropical diseases such as dengue, malaria, cholera, schistosomiasis, lymphatic filariasis, ebola, leprosy, leishmaniasis, and American trypanosomiasis (Chagas). Many different forms of non-invasive approaches such as ultrasound, echocardiography and electrocardiography, bioelectrical impedance, optical detection, simplified and rapid serological tests such as lab-on-chip and micro-/nano-fluidic platforms and medical support systems such as artificial intelligence clinical support systems are discussed. The paper also reviewed the novel clinical diagnosis and management systems using artificial intelligence and bioelectrical impedance techniques for dengue clinical applications.
  18. Al-Faqheri W, Ibrahim F, Thio TH, Bahari N, Arof H, Rothan HA, et al.
    Sensors (Basel), 2015;15(3):4658-76.
    PMID: 25723143 DOI: 10.3390/s150304658
    In this paper, we propose an easy-to-implement passive liquid valve (PLV) for the microfluidic compact-disc (CD). This valve can be implemented by introducing venting chambers to control the air flow of the source and destination chambers. The PLV mechanism is based on equalizing the main forces acting on the microfluidic CD (i.e., the centrifugal and capillary forces) to control the burst frequency of the source chamber liquid. For a better understanding of the physics behind the proposed PLV, an analytical model is described. Moreover, three parameters that control the effectiveness of the proposed valve, i.e., the liquid height, liquid density, and venting chamber position with respect to the CD center, are tested experimentally. To demonstrate the ability of the proposed PLV valve, microfluidic liquid switching and liquid metering are performed. In addition, a Bradford assay is performed to measure the protein concentration and evaluated in comparison to the benchtop procedure. The result shows that the proposed valve can be implemented in any microfluidic process that requires simplicity and accuracy. Moreover, the developed valve increases the flexibility of the centrifugal CD platform for passive control of the liquid flow without the need for an external force or trigger.
  19. Futra D, Heng LY, Surif S, Ahmad A, Ling TL
    Sensors (Basel), 2014 Dec 05;14(12):23248-68.
    PMID: 25490588 DOI: 10.3390/s141223248
    In this article a luminescence fiber optic biosensor for the microdetection of heavy metal toxicity in waters based on the marine bacterium Aliivibrio fischeri (A. fischeri) encapsulated in alginate microspheres is described. Cu(II), Cd(II), Pb(II), Zn(II), Cr(VI), Co(II), Ni(II), Ag(I) and Fe(II) were selected as sample toxic heavy metal ions for evaluation of the performance of this toxicity microbiosensor. The loss of bioluminescence response from immobilized A. fischeri bacterial cells corresponds to changes in the toxicity levels. The inhibition of the luminescent biosensor response collected at excitation and emission wavelengths of 287 ± 2 nm and 487 ± 2 nm, respectively, was found to be reproducible and repeatable within the relative standard deviation (RSD) range of 2.4-5.7% (n = 8). The toxicity biosensor based on alginate micropsheres exhibited a lower limit of detection (LOD) for Cu(II) (6.40 μg/L), Cd(II) (1.56 μg/L), Pb(II) (47 μg/L), Ag(I) (18 μg/L) than Zn(II) (320 μg/L), Cr(VI) (1,000 μg/L), Co(II) (1700 μg/L), Ni(II) (2800 μg/L), and Fe(III) (3100 μg/L). Such LOD values are lower when compared with other previous reported whole cell toxicity biosensors using agar gel, agarose gel and cellulose membrane biomatrices used for the immobilization of bacterial cells. The A. fischeri bacteria microencapsulated in alginate biopolymer could maintain their metabolic activity for a prolonged period of up to six weeks without any noticeable changes in the bioluminescence response. The bioluminescent biosensor could also be used for the determination of antagonistic toxicity levels for toxicant mixtures. A comparison of the results obtained by atomic absorption spectroscopy (AAS) and using the proposed luminescent A. fischeri-based biosensor suggests that the optical toxicity biosensor can be used for quantitative microdetermination of heavy metal toxicity in environmental water samples.
  20. Kamarudin K, Mamduh SM, Shakaff AY, Zakaria A
    Sensors (Basel), 2014;14(12):23365-87.
    PMID: 25490595 DOI: 10.3390/s141223365
    This paper presents a performance analysis of two open-source, laser scanner-based Simultaneous Localization and Mapping (SLAM) techniques (i.e., Gmapping and Hector SLAM) using a Microsoft Kinect to replace the laser sensor. Furthermore, the paper proposes a new system integration approach whereby a Linux virtual machine is used to run the open source SLAM algorithms. The experiments were conducted in two different environments; a small room with no features and a typical office corridor with desks and chairs. Using the data logged from real-time experiments, each SLAM technique was simulated and tested with different parameter settings. The results show that the system is able to achieve real time SLAM operation. The system implementation offers a simple and reliable way to compare the performance of Windows-based SLAM algorithm with the algorithms typically implemented in a Robot Operating System (ROS). The results also indicate that certain modifications to the default laser scanner-based parameters are able to improve the map accuracy. However, the limited field of view and range of Kinect's depth sensor often causes the map to be inaccurate, especially in featureless areas, therefore the Kinect sensor is not a direct replacement for a laser scanner, but rather offers a feasible alternative for 2D SLAM tasks.
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links