Displaying publications 1 - 20 of 362 in total

Abstract:
Sort:
  1. Al-Hardan NH, Abdul Hamid MA, Ahmed NM, Jalar A, Shamsudin R, Othman NK, et al.
    Sensors (Basel), 2016 Jun 07;16(6).
    PMID: 27338381 DOI: 10.3390/s16060839
    In this study, porous silicon (PSi) was prepared and tested as an extended gate field-effect transistor (EGFET) for pH sensing. The prepared PSi has pore sizes in the range of 500 to 750 nm with a depth of approximately 42 µm. The results of testing PSi for hydrogen ion sensing in different pH buffer solutions reveal that the PSi has a sensitivity value of 66 mV/pH that is considered a super Nernstian value. The sensor considers stability to be in the pH range of 2 to 12. The hysteresis values of the prepared PSi sensor were approximately 8.2 and 10.5 mV in the low and high pH loop, respectively. The result of this study reveals a promising application of PSi in the field for detecting hydrogen ions in different solutions.
  2. Umar IA, Mohd Hanapi Z, Sali A, Zulkarnain ZA
    Sensors (Basel), 2016 Jun 22;16(6).
    PMID: 27338411 DOI: 10.3390/s16060943
    Resource bound security solutions have facilitated the mitigation of spatio-temporal attacks by altering protocol semantics to provide minimal security while maintaining an acceptable level of performance. The Dynamic Window Secured Implicit Geographic Forwarding (DWSIGF) routing protocol for Wireless Sensor Network (WSN) has been proposed to achieve a minimal selection of malicious nodes by introducing a dynamic collection window period to the protocol's semantics. However, its selection scheme suffers substantial packet losses due to the utilization of a single distance based parameter for node selection. In this paper, we propose a Fuzzy-based Geographic Forwarding protocol (FuGeF) to minimize packet loss, while maintaining performance. The FuGeF utilizes a new form of dynamism and introduces three selection parameters: remaining energy, connectivity cost, and progressive distance, as well as a Fuzzy Logic System (FLS) for node selection. These introduced mechanisms ensure the appropriate selection of a non-malicious node. Extensive simulation experiments have been conducted to evaluate the performance of the proposed FuGeF protocol as compared to DWSIGF variants. The simulation results show that the proposed FuGeF outperforms the two DWSIGF variants (DWSIGF-P and DWSIGF-R) in terms of packet delivery.
  3. Khalil SF, Mohktar MS, Ibrahim F
    Sensors (Basel), 2016 Jun 18;16(6).
    PMID: 27322285 DOI: 10.3390/s16060911
    Real-time monitoring and precise diagnosis of the severity of Dengue infection is needed for better decisions in disease management. The aim of this study is to use the Bioimpedance Vector Analysis (BIVA) method to differentiate between healthy subjects and severe and non-severe Dengue-infected patients. Bioimpedance was measured using a 50 KHz single-frequency bioimpedance analyzer. Data from 299 healthy subjects (124 males and 175 females) and 205 serologically confirmed Dengue patients (123 males and 82 females) were analyzed in this study. The obtained results show that the BIVA method was able to assess and classify the body fluid and cell mass condition between the healthy subjects and the Dengue-infected patients. The bioimpedance mean vectors (95% confidence ellipse) for healthy subjects, severe and non-severe Dengue-infected patients were illustrated. The vector is significantly shortened from healthy subjects to Dengue patients; for both genders the p-value is less than 0.0001. The mean vector of severe Dengue patients is significantly shortened compare to non-severe patients with a p-value of 0.0037 and 0.0023 for males and females, respectively. This study confirms that the BIVA method is a valid method in differentiating the healthy, severe and non-severe Dengue-infected subjects. All tests performed had a significance level with a p-value less than 0.05.
  4. Liau QY, Leow CY, Ding Z
    Sensors (Basel), 2016 Jun 09;16(6).
    PMID: 27294924 DOI: 10.3390/s16060846
    Relaying is one of the useful techniques to enhance wireless physical-layer security. Existing literature shows that employing full-duplex relay instead of conventional half-duplex relay improves secrecy capacity and secrecy outage probability, but this is at the price of sophisticated implementation. As an alternative, two-path successive relaying has been proposed to emulate operation of full-duplex relay by scheduling a pair of half-duplex relays to assist the source transmission alternately. However, the performance of two-path successive relaying in secrecy communication remains unexplored. This paper proposes a secrecy two-path successive relaying protocol for a scenario with one source, one destination and two half-duplex relays. The relays operate alternately in a time division mode to forward messages continuously from source to destination in the presence of an eavesdropper. Analytical results reveal that the use of two half-duplex relays in the proposed scheme contributes towards a quadratically lower probability of interception compared to full-duplex relaying. Numerical simulations show that the proposed protocol achieves the ergodic achievable secrecy rate of full-duplex relaying while delivering the lowest probability of interception and secrecy outage probability compared to the existing half duplex relaying, full duplex relaying and full duplex jamming schemes.
  5. Shahzad A, Lee M, Xiong NN, Jeong G, Lee YK, Choi JY, et al.
    Sensors (Basel), 2016;16(3).
    PMID: 26950129 DOI: 10.3390/s16030322
    In Industrial systems, Supervisory control and data acquisition (SCADA) system, the pseudo-transport layer of the distributed network protocol (DNP3) performs the functions of the transport layer and network layer of the open systems interconnection (OSI) model. This study used a simulation design of water pumping system, in-which the network nodes are directly and wirelessly connected with sensors, and are monitored by the main controller, as part of the wireless SCADA system. This study also intends to focus on the security issues inherent in the pseudo-transport layer of the DNP3 protocol. During disassembly and reassembling processes, the pseudo-transport layer keeps track of the bytes sequence. However, no mechanism is available that can verify the message or maintain the integrity of the bytes in the bytes received/transmitted from/to the data link layer or in the send/respond from the main controller/sensors. To properly and sequentially keep track of the bytes, a mechanism is required that can perform verification while bytes are received/transmitted from/to the lower layer of the DNP3 protocol or the send/respond to/from field sensors. For security and byte verification purposes, a mechanism needs to be proposed for the pseudo-transport layer, by employing cryptography algorithm. A dynamic choice security buffer (SB) is designed and employed during the security development. To achieve the desired goals of the proposed study, a pseudo-transport layer stack model is designed using the DNP3 protocol open library and the security is deployed and tested, without changing the original design.
  6. Rifai D, Abdalla AN, Ali K, Razali R
    Sensors (Basel), 2016;16(3):298.
    PMID: 26927123 DOI: 10.3390/s16030298
    Non-destructive eddy current testing (ECT) is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR) sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper.
  7. Tripathy A, Pramanik S, Manna A, Shah NF, Shasmin HN, Radzi Z, et al.
    Sensors (Basel), 2016;16(3):292.
    PMID: 26927116 DOI: 10.3390/s16030292
    Armalcolite, a rare ceramic mineral and normally found in the lunar earth, was synthesized by solid-state step-sintering. The in situ phase-changed novel ceramic nanocrystals of Ca-Mg-Ti-Fe based oxide (CMTFOx), their chemical reactions and bonding with polydimethylsiloxane (PDMS) were determined by X-ray diffraction, infrared spectroscopy, and microscopy. Water absorption of all the CMTFOx was high. The lower dielectric loss tangent value (0.155 at 1 MHz) was obtained for the ceramic sintered at 1050 °C (S1050) and it became lowest for the S1050/PDMS nanocomposite (0.002 at 1 MHz) film, which was made by spin coating at 3000 rpm. The excellent flexibility (static modulus ≈ 0.27 MPa and elongation > 90%), viscoelastic property (tanδ = E″/E': 0.225) and glass transition temperature (Tg: -58.5 °C) were obtained for S1050/PDMS film. Parallel-plate capacitive and flexible resistive humidity sensors have been developed successfully. The best sensing performance of the present S1050 (3000%) and its flexible S1050/PDMS composite film (306%) based humidity sensors was found to be at 100 Hz, better than conventional materials.
  8. Al-Qazzaz NK, Bin Mohd Ali SH, Ahmad SA, Islam MS, Escudero J
    Sensors (Basel), 2015;15(11):29015-35.
    PMID: 26593918 DOI: 10.3390/s151129015
    We performed a comparative study to select the efficient mother wavelet (MWT) basis functions that optimally represent the signal characteristics of the electrical activity of the human brain during a working memory (WM) task recorded through electro-encephalography (EEG). Nineteen EEG electrodes were placed on the scalp following the 10-20 system. These electrodes were then grouped into five recording regions corresponding to the scalp area of the cerebral cortex. Sixty-second WM task data were recorded from ten control subjects. Forty-five MWT basis functions from orthogonal families were investigated. These functions included Daubechies (db1-db20), Symlets (sym1-sym20), and Coiflets (coif1-coif5). Using ANOVA, we determined the MWT basis functions with the most significant differences in the ability of the five scalp regions to maximize their cross-correlation with the EEG signals. The best results were obtained using "sym9" across the five scalp regions. Therefore, the most compatible MWT with the EEG signals should be selected to achieve wavelet denoising, decomposition, reconstruction, and sub-band feature extraction. This study provides a reference of the selection of efficient MWT basis functions.
  9. Zakaria SM, Visvanathan R, Kamarudin K, Yeon AS, Md Shakaff AY, Zakaria A, et al.
    Sensors (Basel), 2015;15(12):30894-912.
    PMID: 26690175 DOI: 10.3390/s151229834
    The lack of information on ground truth gas dispersion and experiment verification information has impeded the development of mobile olfaction systems, especially for real-world conditions. In this paper, an integrated testbed for mobile gas sensing experiments is presented. The integrated 3 m × 6 m testbed was built to provide real-time ground truth information for mobile olfaction system development. The testbed consists of a 72-gas-sensor array, namely Large Gas Sensor Array (LGSA), a localization system based on cameras and a wireless communication backbone for robot communication and integration into the testbed system. Furthermore, the data collected from the testbed may be streamed into a simulation environment to expedite development. Calibration results using ethanol have shown that using a large number of gas sensor in the LGSA is feasible and can produce coherent signals when exposed to the same concentrations. The results have shown that the testbed was able to capture the time varying characteristics and the variability of gas plume in a 2 h experiment thus providing time dependent ground truth concentration maps. The authors have demonstrated the ability of the mobile olfaction testbed to monitor, verify and thus, provide insight to gas distribution mapping experiment.
  10. Hussein AA, Rahman TA, Leow CY
    Sensors (Basel), 2015;15(12):30545-70.
    PMID: 26690159 DOI: 10.3390/s151229817
    Localization is an apparent aspect of a wireless sensor network, which is the focus of much interesting research. One of the severe conditions that needs to be taken into consideration is localizing a mobile target through a dispersed sensor network in the presence of physical barrier attacks. These attacks confuse the localization process and cause location estimation errors. Range-based methods, like the received signal strength indication (RSSI), face the major influence of this kind of attack. This paper proposes a solution based on a combination of multi-frequency multi-power localization (C-MFMPL) and step function multi-frequency multi-power localization (SF-MFMPL), including the fingerprint matching technique and lateration, to provide a robust and accurate localization technique. In addition, this paper proposes a grid coloring algorithm to detect the signal hole map in the network, which refers to the attack-prone regions, in order to carry out corrective actions. The simulation results show the enhancement and robustness of RSS localization performance in the face of log normal shadow fading effects, besides the presence of physical barrier attacks, through detecting, filtering and eliminating the effect of these attacks.
  11. Alvankarian J, Majlis BY
    Sensors (Basel), 2015 Nov 24;15(11):29685-701.
    PMID: 26610519 DOI: 10.3390/s151129685
    The adjustable microfluidic devices that have been developed for hydrodynamic-based fractionation of beads and cells are important for fast performance tunability through interaction of mechanical properties of particles in fluid flow and mechanically flexible microstructures. In this review, the research works reported on fabrication and testing of the tunable elastomeric microfluidic devices for applications such as separation, filtration, isolation, and trapping of single or bulk of microbeads or cells are discussed. Such microfluidic systems for rapid performance alteration are classified in two groups of bulk deformation of microdevices using external mechanical forces, and local deformation of microstructures using flexible membrane by pneumatic pressure. The main advantage of membrane-based tunable systems has been addressed to be the high capability of integration with other microdevice components. The stretchable devices based on bulk deformation of microstructures have in common advantage of simplicity in design and fabrication process.
  12. Andrew AM, Zakaria A, Mad Saad S, Md Shakaff AY
    Sensors (Basel), 2016;16(1).
    PMID: 26797617 DOI: 10.3390/s16010031
    In this study, an early fire detection algorithm has been proposed based on low cost array sensing system, utilising off- the shelf gas sensors, dust particles and ambient sensors such as temperature and humidity sensor. The odour or "smellprint" emanated from various fire sources and building construction materials at early stage are measured. For this purpose, odour profile data from five common fire sources and three common building construction materials were used to develop the classification model. Normalised feature extractions of the smell print data were performed before subjected to prediction classifier. These features represent the odour signals in the time domain. The obtained features undergo the proposed multi-stage feature selection technique and lastly, further reduced by Principal Component Analysis (PCA), a dimension reduction technique. The hybrid PCA-PNN based approach has been applied on different datasets from in-house developed system and the portable electronic nose unit. Experimental classification results show that the dimension reduction process performed by PCA has improved the classification accuracy and provided high reliability, regardless of ambient temperature and humidity variation, baseline sensor drift, the different gas concentration level and exposure towards different heating temperature range.
  13. Muhammad A, Yusof NA, Hajian R, Abdullah J
    Sensors (Basel), 2016;16(1).
    PMID: 26805829 DOI: 10.3390/s16010056
    In this work, a novel electrochemical sensor was fabricated for determination of amoxicillin in bovine milk samples by decoration of carboxylated multi-walled carbon nanotubes (MWCNTs) with gold nanoparticles (AuNPs) using ethylenediamine (en) as a cross linker (AuNPs/en-MWCNTs). The constructed nanocomposite was homogenized in dimethylformamide and drop casted on screen printed electrode. Field emission scanning electron microscopy (FESEM), energy dispersive X-Ray (EDX), X-Ray diffraction (XRD) and cyclic voltammetry were used to characterize the synthesized nanocomposites. The results show that the synthesized nanocomposites induced a remarkable synergetic effect for the oxidation of amoxicillin. Effect of some parameters, including pH, buffer, scan rate, accumulation potential, accumulation time and amount of casted nanocomposites, on the sensitivity of fabricated sensor were optimized. Under the optimum conditions, there was two linear calibration ranges from 0.2-10 µM and 10-30 µM with equations of Ipa (µA) = 2.88C (µM) + 1.2017; r = 0.9939 and Ipa (µA) = 0.88C (µM) + 22.97; r = 0.9973, respectively. The limit of detection (LOD) and limit of quantitation (LOQ) were calculated as 0.015 µM and 0.149 µM, respectively. The fabricated electrochemical sensor was successfully applied for determination of Amoxicillin in bovine milk samples and all results compared with high performance liquid chromatography (HPLC) standard method.
  14. Jilnai MT, Wen WP, Cheong LY, ur Rehman MZ
    Sensors (Basel), 2016;16(1).
    PMID: 26805828 DOI: 10.3390/s16010052
    The assessment of moisture loss from meat during the aging period is a critical issue for the meat industry. In this article, a non-invasive microwave ring-resonator sensor is presented to evaluate the moisture content, or more precisely water holding capacity (WHC) of broiler meat over a four-week period. The developed sensor has shown significant changes in its resonance frequency and return loss due to reduction in WHC in the studied duration. The obtained results are also confirmed by physical measurements. Further, these results are evaluated using the Fricke model, which provides a good fit for electric circuit components in biological tissue. Significant changes were observed in membrane integrity, where the corresponding capacitance decreases 30% in the early aging (0D-7D) period. Similarly, the losses associated with intracellular and extracellular fluids exhibit changed up to 42% and 53%, respectively. Ultimately, empirical polynomial models are developed to predict the electrical component values for a better understanding of aging effects. The measured and calculated values are found to be in good agreement.
  15. Zubair S, Syed Yusoff SK, Fisal N
    Sensors (Basel), 2016;16(2):172.
    PMID: 26840312 DOI: 10.3390/s16020172
    The emergence of the Internet of Things and the proliferation of mobile wireless devices has brought the area of mobile cognitive radio sensor networks (MCRSN) to the research spot light. Notwithstanding the potentials of CRSNs in terms of opportunistic channel usage for bursty traffic, the effect of the mobility of resource-constrained nodes to route stability, mobility-induced spatio-temporal spectral opportunities and primary user (PU) protection still remain open issues that need to be jointly addressed. To this effect, this paper proposes a mobile reliable geographical forwarding routing (MROR) protocol. MROR provides a robust mobile framework for geographical forwarding that is based on a mobility-induced channel availability model. It presents a comprehensive routing strategy that considers PU activity (to take care of routes that have to be built through PU coverage), PU signal protection (by the introduction of a mobility-induced guard (mguard) distance) and the random mobility-induced spatio-temporal spectrum opportunities (for enhancement of throughput). It also addresses the issue of frequent route maintenance that arises when speeds of the mobile nodes are considered as a routing metric. As a result, simulation has shown the ability of MROR to reduce the route failure rate by about 65% as against other schemes. In addition, further results show that MROR can improve both the throughput and goodput at the sink in an energy-efficient manner that is required in CRSNs as against compared works.
  16. Lee FW, Chai HK, Lim KS
    Sensors (Basel), 2016;16(3).
    PMID: 26959028 DOI: 10.3390/s16030337
    An improved single sided Rayleigh wave (R-wave) measurement was suggested to characterize surface breaking crack in steel reinforced concrete structures. Numerical simulations were performed to clarify the behavior of R-waves interacting with surface breaking crack with different depths and degrees of inclinations. Through analysis of simulation results, correlations between R-wave parameters of interest and crack characteristics (depth and degree of inclination) were obtained, which were then validated by experimental measurement of concrete specimens instigated with vertical and inclined artificial cracks of different depths. Wave parameters including velocity and amplitude attenuation for each case were studied. The correlations allowed us to estimate the depth and inclination of cracks measured experimentally with acceptable discrepancies, particularly for cracks which are relatively shallow and when the crack depth is smaller than the wavelength.
  17. Ghadiry M, Gholami M, Kong LC, Yi CW, Ahmad H, Alias Y
    Sensors (Basel), 2015;16(1).
    PMID: 26729115 DOI: 10.3390/s16010039
    An on-chip optical humidity sensor using Nano-anatase TiO₂ coating is presented here. The coating material was prepared so that the result is in solution form, making the fabrication process quick and simple. Then, the solution was effortlessly spin-coated on an SU8 straight channel waveguide. Investigating the sensitivity and performance (response time) of the device revealed a great linearity in the wide range (35% to 98%) of relative humidity (RH). In addition, a variation of more than 14 dB in transmitted optical power was observed, with a response time of only ~0.7 s. The effect of coating concentration and UV treatment was examined on the performance and repeatability of the sensor. Interesting observations were found, and the attributed mechanisms were described. In addition, the proposed sensor was extensively compared with other state-of-the-art proposed counterparts from the literature and remarkable advantages were found. Since a high sensitivity of ~0.21 dB/%RH and high dynamic performances were demonstrated, this sensor is proposed for use in biomedical applications.
  18. Logroño W, Guambo A, Pérez M, Kadier A, Recalde C
    Sensors (Basel), 2015;16(1).
    PMID: 26784197 DOI: 10.3390/s16010101
    Microbial fuel cells represent an innovative technology which allow simultaneous waste treatment, electricity production, and environmental monitoring. This study provides a preliminary investigation of the use of terrestrial Single chamber Microbial Fuel Cells (SMFCs) as biosensors. Three cells were created using Andean soil, each one for monitoring a BOD concentration of synthetic washed rice wastewater (SRWW) of 10, 100, and 200 mg/L for SMFC1, SMFC2 and SMFC3, respectively. The results showed transient, exponential, and steady stages in the SMFCs. The maximum open circuit voltage (OCV) peaks were reached during the elapsed time of the transient stages, according to the tested BOD concentrations. A good linearity between OCV and time was observed in the increasing stage. The average OCV in this stage increased independently of the tested concentrations. SMFC1 required less time than SMFC2 to reach the steady stage, suggesting the BOD concentration is an influencing factor in SMFCs, and SMFC3 did not reach it. The OCV ratios were between 40.6-58.8 mV and 18.2-32.9 mV for SMFC1 and SMFC2. The reproducibility of the SMFCs was observed in four and three cycles for SMFC1 and SMFC2, respectively. The presented SMFCs had a good response and reproducibility as biosensor devices, and could be an alternative for environmental monitoring.
  19. Buyong MR, Larki F, Faiz MS, Hamzah AA, Yunas J, Majlis BY
    Sensors (Basel), 2015;15(5):10973-90.
    PMID: 25970255 DOI: 10.3390/s150510973
    In this work, the dielectrophoretic force (F(DEP)) response of Aluminium Microelectrode Arrays with tapered profile is investigated through experimental measurements and numerical simulations. A standard CMOS processing technique with a step for the formation of a tapered profile resist is implemented in the fabrication of Tapered Aluminium Microelectrode Arrays (TAMA). The F(DEP) is investigated through analysis of the Clausius-Mossotti factor (CMF) and cross-over frequency (f(xo)). The performance of TAMA with various side wall angles is compared to that of microelectrodes with a straight cut sidewall profile over a wide range of frequencies through FEM numerical simulations. Additionally, electric field measurement (EFM) is performed through scanning probe microscopy (SPM) in order to obtain the region of force focus in both platforms. Results showed that the tapered profile microelectrodes with angles between 60° and 70° produce the highest electric field gradient on the particles. Also, the region of the strongest electric field in TAMA is located at the bottom and top edge of microelectrode while the strongest electric field in microelectrodes with straight cut profile is found at the top corner of the microelectrode. The latter property of microelectrodes improves the probability of capturing/repelling the particles at the microelectrode's side wall.
  20. Oung QW, Muthusamy H, Lee HL, Basah SN, Yaacob S, Sarillee M, et al.
    Sensors (Basel), 2015 Aug 31;15(9):21710-45.
    PMID: 26404288 DOI: 10.3390/s150921710
    Parkinson's Disease (PD) is characterized as the commonest neurodegenerative illness that gradually degenerates the central nervous system. The goal of this review is to come out with a summary of the recent progress of numerous forms of sensors and systems that are related to diagnosis of PD in the past decades. The paper reviews the substantial researches on the application of technological tools (objective techniques) in the PD field applying different types of sensors proposed by previous researchers. In addition, this also includes the use of clinical tools (subjective techniques) for PD assessments, for instance, patient self-reports, patient diaries and the international gold standard reference scale, Unified Parkinson Disease Rating Scale (UPDRS). Comparative studies and critical descriptions of these approaches have been highlighted in this paper, giving an insight on the current state of the art. It is followed by explaining the merits of the multiple sensor fusion platform compared to single sensor platform for better monitoring progression of PD, and ends with thoughts about the future direction towards the need of multimodal sensor integration platform for the assessment of PD.
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links