Displaying 1 publication

Abstract:
Sort:
  1. Utami M, Yenn TW, Alam MW, Ravindran B, Husniati, Purnama I, et al.
    Heliyon, 2024 Feb 29;10(4):e26636.
    PMID: 38420369 DOI: 10.1016/j.heliyon.2024.e26636
    In this study, the fabrication of titanium dioxide/reduced graphene oxide (TiO2/rGO) utilising banana peel extracts (Musa paradisiaca L.) as a reducing agent for the photoinactivation of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was explored. The GO synthesis was conducted using a modified Tour method, whereas the production of rGO involved banana peel extracts through a reflux method. The integration of TiO2 into rGO was achieved via a hydrothermal process. The successful synthesis of TiO2/rGO was verified through various analytical techniques, including X-ray diffraction (XRD), gas sorption analysis (GSA), Fourier-transform infrared (FT-IR) spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS), scanning electron microscope-energy dispersive X-ray (SEM-EDX) and transmission electron microscopy (TEM) analyses. The results indicated that the hydrothermal-assisted green synthesis effectively produced TiO2/rGO with a particle size of 60.5 nm. Compared with pure TiO2, TiO2/rGO demonstrated a reduced crystallite size (88.505 nm) and an enhanced surface area (22.664 m2/g). Moreover, TiO2/rGO featured a low direct bandgap energy (3.052 eV), leading to elevated electrical conductivity and superior photoconductivity. To evaluate the biological efficacy of TiO2/rGO, photoinactivation experiments targeting E. coli and S. aureus were conducted using the disc method. Sunlight irradiation emerged as the most effective catalyst, achieving optimal inactivation results within 6 and 4 h.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links