Strains belonging to the genus Amycolatopsis are well known for the production of a number of important antimicrobials and other bioactive molecules. In this study, we have sequenced the genomes of five Amycolatopsis strains including Amycolatopsis circi DSM 45561T, Amycolatopsis palatopharyngis DSM 44832T and Amycolatopsis thermalba NRRL B-24845T. The genome sequences were analyzed with 52 other publically available Amycolatopsis genomes, representing 34 species, and 12 representatives from related genera including Saccharomonospora, Saccharopolyspora, Saccharothrix, Pseudonocardia and Thermobispora. Based on the core genome phylogeny, Amycolatopsis strains were subdivided into four major clades and several singletons. The genus Amycolatopsis is homogeneous with only three strains noted to group with other genera. Amycolatopsis halophila YIM93223T is quite distinct from other Amycolatopsis strains, both phylogenetically and taxonomically, and belongs to a distinct genus. In addition, Amycolatopsis palatopharyngis DSM 44832T and Amycolatopsis marina CGMCC4 3568T grouped in a clade with Saccharomonospora strains and showed similar taxogenomic differences to this genus as well as other Amycolatopsis strains. The study found a number of strains, particularly those identified as Amycolatopsis orientalis, whose incorrect identification could be resolved by taxogenomic analyses. Similarly, some unclassified strains could be assigned with species designations. The genome sequences of some strains that were independently sequenced by different laboratories were almost identical (99-100% average nucleotide and amino acid identities) consistent with them being the same strain, and confirming the reproducibility and robustness of genomic data. These analyses further demonstrate that whole genome sequencing can reliably resolve intra- and, inter-generic structures and should be incorporated into prokaryotic systematics.
Streptomyces thermoautotrophicus UBT1T has been suggested to merit generic status due to its phylogenetic placement and distinctive phenotypes among Actinomycetia. To evaluate whether 'S. thermoautotrophicus' represents a higher taxonomic rank, 'S. thermoautotrophicus' strains UBT1T and H1 were compared to Actinomycetia using 16S rRNA gene sequences and comparative genome analyses. The UBT1T and H1 genomes each contain at least two different 16S rRNA sequences, which are closely related to those of Acidothermus cellulolyticus (order Acidothermales). In multigene-based phylogenomic trees, UBT1T and H1 typically formed a sister group to the Streptosporangiales-Acidothermales clade. The Average Amino Acid Identity, Percentage of Conserved Proteins, and whole-genome Average Nucleotide Identity (Alignment Fraction) values were ≤58.5%, ≤48%, ≤75.5% (0.3) between 'S. thermoautotrophicus' and Streptosporangiales members, all below the respective thresholds for delineating genera. The values for genomics comparisons between strains UBT1T and H1 with Acidothermales, as well as members of the genus Streptomyces, were even lower. A review of the 'S. thermoautotrophicus' proteomic profiles and KEGG orthology demonstrated that UBT1T and H1 present pronounced differences, both tested and predicted, in phenotypic and chemotaxonomic characteristics compared to its sister clades and Streptomyces. The distinct phylogenetic position and the combination of genotypic and phenotypic characteristics justify the proposal of Carbonactinospora gen. nov., with the type species Carbonactinospora thermoautotrophica comb. nov. (type strain UBT1T, = DSM 100163T = KCTC 49540T) belonging to Carbonactinosporaceae fam. nov. within Actinomycetia.