Escherichia coli (E. coli) from the B2 phylogenetic group is implicated in colorectal cancer (CRC) as it possesses a genomic island, termed polyketide synthetase (pks), which codes for the synthesis of colibactin, a genotoxin that induces DNA damage, cell cycle arrest, mutations and chromosomal instability in eukaryotic cells. The aim of this study was to detect and compare the prevalence of E. coli expressing pks (pks+ E. coli) in CRC patients and healthy controls followed by investigating the virulence triggered by pks+ E. coli using an in-vitro model. Mucosal colon tissues were collected and processed to determine the presence of pks+ E. coli. Thereafter, primary colon epithelial (PCE) and colorectal carcinoma (HCT116) cell lines were used to detect cytopathic response to the isolated pks+ E. coli strains. Our results showed 16.7% and 4.3% of CRC and healthy controls, respectively were pks+ E. coli. Further, PCE displayed syncytia and cell swelling and HCT116 cells, megalocytosis, in response to treatment with the isolated pks+ E. coli strains. In conclusion, pks+ E. coli was more often isolated from tissue of CRC patients compared to healthy individuals, and our in-vitro assays suggest these isolated strains may be involved in the initiation and development of CRC.
Klebsiella pneumoniae (K. pneumoniae) colonizes the human gut and is a causative factor of pyogenic liver abscess (PLA). Retrospective studies conducted on K. pneumoniae PLA patients revealed subsequent CRC development in later years of their life with increasing prevalence of these strains harbouring polyketide synthase (PKS) genes. To our knowledge there are no known studies directly implicating K. pneumoniae with CRC to date. Our aims are to characterize K. pneumoniae isolates from CRC patients and investigate its effects on cell proliferation in vitro. K. pneumoniae isolates were characterized by screening virulence genes including polyketide synthase (PKS), biofilm assay, antibiotic susceptibility, and string test to determine hypervirulent (hvKp) strains. Solubilised antigens of selected K. pneumoniae isolates were co-cultured with primary colon cell lines and CRC cell lines (Stage I-IV) for 48 h. The enhancement of proliferation was measured through MTT and ECIS assay. Twenty-five percent of K. pneumoniae isolates were PKS-positive out of which 50% were hvKp strains. The majority of the isolates were from the more virulent serotype of K1 (30%) and K2 (50%). PKS-positive K. pneumoniae isolates did not possess genes to confer carbapenem resistance but instead were more highly associated with siderophore genes (aerobactin, enterobactin, and yersiniabactin) and allantoin metabolism genes (allS, allS2). Cell proliferation in primary colon, SW1116 (Stage I), and SW480 (Stage II) CRC cell lines were enhanced when co-cultured with PKS-positive K. pneumoniae antigens. ECIS revealed enhanced cell proliferation upon recurrent antigen exposure. This demonstrates the possible role that PKS-positive K. pneumoniae has in exacerbating CRC progression.