Displaying all 2 publications

Abstract:
Sort:
  1. Seera M, Lim CP, Kumar A, Dhamotharan L, Tan KH
    Ann Oper Res, 2021 Jun 08.
    PMID: 34121790 DOI: 10.1007/s10479-021-04149-2
    Payment cards offer a simple and convenient method for making purchases. Owing to the increase in the usage of payment cards, especially in online purchases, fraud cases are on the rise. The rise creates financial risk and uncertainty, as in the commercial sector, it incurs billions of losses each year. However, real transaction records that can facilitate the development of effective predictive models for fraud detection are difficult to obtain, mainly because of issues related to confidentially of customer information. In this paper, we apply a total of 13 statistical and machine learning models for payment card fraud detection using both publicly available and real transaction records. The results from both original features and aggregated features are analyzed and compared. A statistical hypothesis test is conducted to evaluate whether the aggregated features identified by a genetic algorithm can offer a better discriminative power, as compared with the original features, in fraud detection. The outcomes positively ascertain the effectiveness of using aggregated features for undertaking real-world payment card fraud detection problems.
  2. Nandi AK, Randhawa KK, Chua HS, Seera M, Lim CP
    PLoS One, 2022;17(1):e0260579.
    PMID: 35051184 DOI: 10.1371/journal.pone.0260579
    With the advancement in machine learning, researchers continue to devise and implement effective intelligent methods for fraud detection in the financial sector. Indeed, credit card fraud leads to billions of dollars in losses for merchants every year. In this paper, a multi-classifier framework is designed to address the challenges of credit card fraud detections. An ensemble model with multiple machine learning classification algorithms is designed, in which the Behavior-Knowledge Space (BKS) is leveraged to combine the predictions from multiple classifiers. To ascertain the effectiveness of the developed ensemble model, publicly available data sets as well as real financial records are employed for performance evaluations. Through statistical tests, the results positively indicate the effectiveness of the developed model as compared with the commonly used majority voting method for combination of predictions from multiple classifiers in tackling noisy data classification as well as credit card fraud detection problems.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links