Displaying all 5 publications

Abstract:
Sort:
  1. Azman MA, Ramli MZ, Che Othman SF, Shafiee SA
    Mar Pollut Bull, 2021 Sep;170:112630.
    PMID: 34146861 DOI: 10.1016/j.marpolbul.2021.112630
    This study investigated the accumulation of debris at four sites, namely, Gebeng, Batu Hitam, Cherok Paloh, and Air Leleh, along the Pahang coastline, Peninsular Malaysia from March 2019 to February 2020. Plastic was the dominant debris (86.1%) and followed by cloth/fabric-based debris (6.0%), processed lumber debris (3.3%), rubber (2.7%), glass (1.5%), and metal (0.4%). The land-based debris (82.0%) was the major source of the deposition of marine waste. A statistically significant relationship was found between the seasonal variation and marine debris density in tidal and seasonal current along the Pahang coastline. In general, the Northeast Monsoon season had a higher amount of debris than the Southwest Monsoon season.
  2. Falina S, Anuar K, Shafiee SA, Juan JC, Manaf AA, Kawarada H, et al.
    Sensors (Basel), 2022 Dec 01;22(23).
    PMID: 36502059 DOI: 10.3390/s22239358
    Recently, there has been increasing interest in electrochemical printed sensors for a wide range of applications such as biomedical, pharmaceutical, food safety, and environmental fields. A major challenge is to obtain selective, sensitive, and reliable sensing platforms that can meet the stringent performance requirements of these application areas. Two-dimensional (2D) nanomaterials advances have accelerated the performance of electrochemical sensors towards more practical approaches. This review discusses the recent development of electrochemical printed sensors, with emphasis on the integration of non-carbon 2D materials as sensing platforms. A brief introduction to printed electrochemical sensors and electrochemical technique analysis are presented in the first section of this review. Subsequently, sensor surface functionalization and modification techniques including drop-casting, electrodeposition, and printing of functional ink are discussed. In the next section, we review recent insights into novel fabrication methodologies, electrochemical techniques, and sensors' performances of the most used transition metal dichalcogenides materials (such as MoS2, MoSe2, and WS2), MXenes, and hexagonal boron-nitride (hBN). Finally, the challenges that are faced by electrochemical printed sensors are highlighted in the conclusion. This review is not only useful to provide insights for researchers that are currently working in the related area, but also instructive to the ones new to this field.
  3. Yahya SH, Al-Lolage FA, Mahat MM, Ramli MZ, Syamsul M, Falina S, et al.
    RSC Adv, 2023 Nov 07;13(47):32918-32926.
    PMID: 38025850 DOI: 10.1039/d3ra05592b
    The increasing levels of carbon dioxide (CO2) in the atmosphere may dissolve into the ocean and affect the marine ecosystem. It is crucial to determine the level of dissolved CO2 in the ocean to enable suitable mitigation actions to be carried out. The conventional electrode materials are expensive and susceptible to chloride ion attack. Therefore, there is a need to find suitable alternative materials. This novel study investigates the electrochemical behaviour of dissolved CO2 on roughened molybdenum (Mo) microdisk electrodes, which were mechanically polished using silicon carbide paper. Pits and dents can be seen on the electrode surface as observed using scanning electron microscopy. X-ray diffraction spectra confirm the absence of abrasive materials and the presence of defects on the electrode surface. The electrochemical surface for the roughened electrodes is higher than that for the smoothened electrodes. Our findings show that the roughened electrodes exhibit a significantly higher electrocatalytic activity than the smoothened electrodes for the reduction of dissolved CO2. Our results reveal a linear relationship between the current and square root of scan rate. Furthermore, we demonstrate that saturating the electrolyte solution with CO2 using a bubbling time of just 20 minutes at a flow rate of 5 L min-1 for a 50 mL solution is sufficient. This study provides new insights into the electrochemical behaviour of dissolved CO2 on roughened Mo microdisk electrodes and highlights their potential as a promising material for CO2 reduction and other electrochemical applications. Ultimately, our work contributes to the ongoing efforts to mitigate the effects of climate change and move towards a sustainable future.
  4. Ahmad Ruzaidi DA, Mahat MM, Shafiee SA, Mohamed Sofian Z, Mohmad Sabere AS, Ramli R, et al.
    Polymers (Basel), 2021 Oct 02;13(19).
    PMID: 34641210 DOI: 10.3390/polym13193395
    Scaffolds support and promote the formation of new functional tissues through cellular interactions with living cells. Various types of scaffolds have found their way into biomedical science, particularly in tissue engineering. Scaffolds with a superior tissue regenerative capacity must be biocompatible and biodegradable, and must possess excellent functionality and bioactivity. The different polymers that are used in fabricating scaffolds can influence these parameters. Polysaccharide-based polymers, such as collagen and chitosan, exhibit exceptional biocompatibility and biodegradability, while the degradability of synthetic polymers can be improved using chemical modifications. However, these modifications require multiple steps of chemical reactions to be carried out, which could potentially compromise the end product's biosafety. At present, conducting polymers, such as poly(3,4-ethylenedioxythiophene) poly(4-styrenesulfonate) (PEDOT: PSS), polyaniline, and polypyrrole, are often incorporated into matrix scaffolds to produce electrically conductive scaffold composites. However, this will reduce the biodegradability rate of scaffolds and, therefore, agitate their biocompatibility. This article discusses the current trends in fabricating electrically conductive scaffolds, and provides some insight regarding how their immunogenicity performance can be interlinked with their physical and biodegradability properties.
  5. Kasri MA, Mohd Halizan MZ, Harun I, Bahrudin FI, Daud N, Aizamddin MF, et al.
    RSC Adv, 2024 May 10;14(22):15515-15541.
    PMID: 38741977 DOI: 10.1039/d4ra00972j
    The paramount importance of lithium (Li) nowadays and the mounting volume of untreated spent LIB have imposed pressure on innovators to tackle the near-term issue of Li resource depletion through recycling. The trajectory of research dedicated to recycling has skyrocketed in this decade, reflecting the global commitment to addressing the issues surrounding Li resources. Although metallurgical methods, such as pyro- and hydrometallurgy, are presently prevalent in Li recycling, they exhibit unsustainable operational characteristics including elevated temperatures, the utilization of substantial quantities of expensive chemicals, and the generation of emissions containing toxic gases such as Cl2, SO2, and NOx. Therefore, the alternative electrochemical method has gained growing attention, as it involves a more straightforward operation leveraging ion-selective features and employing water as the main reagent, which is seen as more environmentally benign. Despite this, intensive efforts are still required to advance the electrochemical method toward commercialisation. This review highlights the key points in the electrochemical method that demand attention, including the feasibility of a large-scale setup, consideration of the substantial volume of electrolyte consumption, the design of membranes with the desired features, a suitable layout of the membrane, and the absence of techno-economic assessments for the electrochemical method. The perspectives presented herein provide a crucial understanding of the challenges of advancing the technological readiness level of the electrochemical method.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links