Displaying all 2 publications

Abstract:
Sort:
  1. Shah Rizal Kasim, Yeong, Meng Yee, Hazizan Md. Akil, Zainal Arifin Ahmad, Hazman Seli
    MyJurnal
    Many attempts have been focused in the past on preparing of synthetic E-tricalcium (E-TCP), which being employed as bone substitute due to its biocompatibility and resorbability. Low temperature synthesize such as sol-gel method become popular due to the high product purity and homogenous composition. Sol-gel method is less economical towards commercialization because the cost of raw materials and the yield of the product that can be achieved. This paper describes the synthesis of ETCP via mixing of CaCO3 and H3PO4 followed by calcinations process at 750qC – 1050qC. X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimeter (DSC), fourier transformation infra-red (FTIR) were used for characterization and evaluation of the phase composition, morphology, particle size and thermal behavior of the product. E-TCP phase start to occur after calcinations at 750qC.
  2. Yeong, Meng How, Shah Rizal Kasim, Hazizan Md Akil, Zainal Arifin Ahmad
    MyJurnal
    β-tricalcium phosphate (β-TCP) powders were synthesized by using various particles sizes (40 nm – 780 μm) calcium carbonate (CaCO3) and phosphoric acid (H3PO4) at room temperature (25 ˚C). The synthesized powders were characterized by using X-Ray Diffraction (XRD) method. The purity of β-TCP powders were determined from XRD pattern while the crystallite size of β-TCP powders were calculated by using Scherrer equation. Results shows that the purity of β-TCP powders were ranged from 20.33 % to 81.94 % while the crystallite size of β- TCP powders were ranged from 0.04391 μm to 0.06751 μm. From this work, particle size of CaCO3 will influenced the purity but not the mean crystallite size of synthesized β-TCP.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links