Displaying all 5 publications

Abstract:
Sort:
  1. Alzahrani AR, Ibrahim IAA, Shahzad N, Shahid I, Alanazi IM, Falemban AH, et al.
    Int J Biol Macromol, 2023 Sep 13;253(Pt 4):126889.
    PMID: 37714232 DOI: 10.1016/j.ijbiomac.2023.126889
    Gold nanoparticles have been broadly investigated as cancer diagnostic and therapeutic agents. Gold nanoparticles are a favorable drug delivery vehicle with their unique subcellular size and good biocompatibility. Chitosan, agarose, fucoidan, porphyran, carrageenan, ulvan and alginate are all examples of biologically active macromolecules. Since they are biocompatible, biodegradable, and irritant-free, they find extensive application in biomedical and macromolecules. The versatility of these compounds is enhanced because they are amenable to modification by functional groups like sulfation, acetylation, and carboxylation. In an eco-friendly preparation process, the biocompatibility and targeting of GNPs can be improved by functionalizing them with polysaccharides. This article provides an update on using carbohydrate-based GNPs in liver cancer treatment, imaging, and drug administration. Selective surface modification of several carbohydrate types and further biological uses of GNPs are focused on.
  2. Ibrahim IAA, Alzahrani AR, Alanazi IM, Shahzad N, Shahid I, Falemban AH, et al.
    Int J Biol Macromol, 2023 Dec 31;253(Pt 2):126581.
    PMID: 37652322 DOI: 10.1016/j.ijbiomac.2023.126581
    Carbohydrate polymers-based surface-modified nano-delivery systems have gained significant attention in recent years for enhancing targeted delivery to colon cancer. These systems leverage carbohydrate polymers' unique properties, such as biocompatibility, biodegradability, and controlled release. These properties make them suitable candidates for drug delivery applications. Nano-delivery systems loaded with bioactive compounds are well-studied for targeted colorectal cancer delivery. However, those drugs' target reach is still limited in various nano-delivery systems. To overcome this limitation, surface modification of nanoparticles with carbohydrate polymers like chitosan, pectin, alginate, and guar gum showed enhanced target-reaching capacity along with enhanced anticancer efficacy. Recently, a chitosan-decorated PLGA nanoparticle was constructed with tannic acid and vitamin E and showed long-term release of specific targets along with higher anticancer efficacy. Similarly, Chitosan-conjugated glucuronic acid-coated silica nanoparticles loaded with capecitabine were studied against colon cancer and found to be the pH-responsive controlled release of capecitabine with higher anticancer efficacy. Surface-modified carbohydrate polymers have promising potential for improving colon cancer target delivery. By leveraging the unique properties of these polymers, such as surface modification, pH responsiveness, mucoadhesion, controlled drug release, and combination therapy, researchers are working toward developing more effective and targeted treatment strategies for colon cancer.
  3. Ibrahim IAA, Alzahrani AR, Alanazi IM, Shahzad N, Shahid I, Falemban AH, et al.
    Int J Biol Macromol, 2023 Dec 31;253(Pt 7):127334.
    PMID: 37820908 DOI: 10.1016/j.ijbiomac.2023.127334
    Our study produced GO-TiO2-chitosan-escin nanocomposites (GTCEnc), characterized them using physical and biological methods, and evaluated their potential as cancer treatment candidates. Standard protocols were used to produce GTCEnc. Nanocomposites are created using XRD, FTIR, UV-Vis, and PL spectroscopy analysis. The morphology and ultrastructure of nanocomposites were investigated using SEM and TEM. Nanocomposites containing TiO2, GO, chitosan, and escin nanostructures were characterized using diffraction, microscopy, and spectroscopy; the antimicrobial activity of GTCEnc was investigated. Various methods were used to test the anticancer activity of GTCEnc against COLO 205 cell lines, including MTT, EtBr/AO, DAPI, JC-1, Annexin-V/FITC, cell cycle analysis, and activation of pro-apoptotic markers, such as caspase-3, -8, and -9. The nanocomposites were cytotoxic to COLO 205 cells, with an IC50 of 22.68 μg/mL, but not to 293T cells. In cells treated with nanomaterials, cytotoxicity, nuclear damage, apoptosis induction, and free radical production were significantly increased. Our finding suggests that GTCEnc has potent anticancer and antibacterial activity in vitro because of its unique nanocomposite properties and antibacterial and anticancer activity in vitro. Additional research is required to understand the clinical efficacy of these nanocomposites.
  4. Ibrahim IAA, Alzahrani AR, Alanazi IM, Shahzad N, Shahid I, Falemban AH, et al.
    Int J Nanomedicine, 2024;19:1109-1124.
    PMID: 38344441 DOI: 10.2147/IJN.S445206
    BACKGROUND: Liver cancer is the sixth most prevalent form of cancer and the second major cause of cancer-associated mortalities worldwide. Cancer nanotechnology has the ability to fundamentally alter cancer treatment, diagnosis, and detection.

    OBJECTIVE: In this study, we explained the development of graphene oxide/polyethylene glycol/folic acid/brucine nanocomposites (GO/PEG/Bru-FA NCs) and evaluated their antimicrobial and anticancer effect on the liver cancer HepG2 cells.

    METHODOLOGY: The GO/PEG/Bru-FA NCs were prepared using the co-precipitation technique and characterized using various techniques. The cytotoxicity of the GO/PEG/Bru-FA NCs was tested against both liver cancer HepG2 and non-malignant Vero cells using an MTT assay. The antimicrobial activity of the GO/PEG/Bru-FA NCs was tested against several pathogens using the well diffusion technique. The effects of GO/PEG/Bru-FA NCs on endogenous ROS accumulation, apoptosis, and MMP levels were examined using corresponding fluorescent staining assays, respectively. The apoptotic protein expressions, such as Bax, Bcl-2, and caspases, were studied using the corresponding kits.

    RESULTS: The findings of various characterization assays revealed the development of GO/PEG/Bru-FA NCs with face-centered spherical morphology and an agglomerated appearance with an average size of 197.40 nm. The GO/PEG/Bru-FA NCs treatment remarkably inhibited the growth of the tested pathogens. The findings of the MTT assay evidenced that the GO/PEG/Bru-FA NCs effectively reduced the HepG2 cell growth while not showing toxicity to the Vero cells. The findings of the fluorescent assay proved that the GO/PEG/Bru-FA NCs increased ROS generation, reduced MMP levels, and promoted apoptosis in the HepG2 cells. The levels of Bax, caspase-9, and -3 were increased, and Bcl-2 was reduced in the GO/PEG/Bru-FA NCs-treated HepG2 cells.

    CONCLUSION: The results of this work demonstrate that GO/PEG/Bru-FA NCs suppress viability and induce apoptosis in HepG2 cells, indicating their potential as an anticancer candidate.

  5. Shahzad N, Alzahrani AR, Aziz Ibrahim IA, Shahid I, Alanazi IM, Falemban AH, et al.
    Heliyon, 2024 Jan 30;10(2):e24207.
    PMID: 38298622 DOI: 10.1016/j.heliyon.2024.e24207
    High blood glucose levels are a hallmark of the metabolic syndrome known as diabetes mellitus. More than 600 million people will have diabetes by 2045 as the global prevalence of the disease continues to rise. Contemporary antidiabetic drugs reduce hyperglycemia and its consequences. However, these drugs come with undesirable side effects, so it's encouraging that research into plant extracts and bioactive substances with antidiabetic characteristics is on the rise. Natural remedies are preferable to conventional anti-diabetic drugs since they are safer for the body, more affordable and have fewer potential adverse effects. Biological macromolecules such as liposomes, niosomes, polymeric nanoparticles, solid lipid nanoparticles, nanoemulsions and metallic nanoparticles are explored in this review. Current drug restrictions have been addressed, and the effectiveness of plant-based antidiabetic therapies has enhanced the merits of these methods. Plant extracts' loading capacity and the carriers' stability are the primary obstacles in developing plant-based nanocarriers. Hydrophilic, hydrophobic, and amphiphilic drugs are covered, and a brief overview of the amphipathic features of liposomes, phospholipids, and lipid nanocarriers is provided. Metallic nanoparticles' benefits and attendant risks are highlighted to emphasize their efficiency in treating hyperglycemia. Researchers interested in the potential of nanoparticles loaded with plant extracts as antidiabetic therapeutics may find the current helpful review.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links