RESULTS: We obtained survey responses from 87 out of 148 clinicians (62%) from 13 countries and regions. In China, 1385 DMD patients were followed-up by 5 respondent neurologists, and 84% were between 0 and 9 years of age (15% were 10-19 years, 1% > 19 years). While in Japan, 1032 patients were followed-up by 20 clinicians, and the age distribution was similar between the 3 groups (27% were 0-9 years, 35% were 10-19 years, 38% were >19 years). Most respondent clinicians (91%) were aware of DMD standard of care recommendations. Daily prednisolone/prednisone administration was used most frequently at initiation (N = 45, 64%). Inconsistent opinion on steroid therapy after loss of ambulation and medication for bone protection was observed.
CONCLUSIONS: Rare disease research infrastructures have been underdeveloped in many of Asian and Oceanian countries. In this situation, our results show the snapshots of current medical situation and clinical practice in DMD. For further epidemiological studies, expansion of DMD registries is necessary.
OBJECTIVE: To develop a decision-making program and analyze multi-institutional outcomes of RAC-IVCT versus RAT-IVCT.
DESIGN, SETTING, AND PARTICIPANTS: Ninety patients with renal cell carcinoma (RCC) with level II IVCT were included from eight Chinese urological centers, and underwent RAC-IVCT (30 patients) or RAT-IVCT (60 patients) from June 2013 to January 2019.
SURGICAL PROCEDURE: The surgical strategy was based on IVCT imaging characteristics. RAT-IVCT was performed with standardized cavotomy, thrombectomy, and IVC reconstruction. RAC-IVCT was mainly performed in patients with extensive IVC wall invasion when the collateral blood vessels were well-established. For right-sided RCC, the IVC from the infrarenal vein to the infrahepatic veins was stapled. For left-sided RCC, the IVC from the suprarenal vein to the infrahepatic veins was removed and caudal IVC reconstruction was performed to ensure the right renal vein returned through the IVC collaterals.
MEASUREMENTS: Clinicopathological, operative, and survival outcomes were collected and analyzed.
RESULTS AND LIMITATIONS: All procedures were successfully performed without open conversion. The median operation time (268 vs 190 min) and estimated blood loss (1500 vs 400 ml) were significantly greater for RAC-IVCT versus RAT-IVCT (both p < 0.001). IVC invasion was a risk factor for progression-free and overall survival at midterm follow-up. Large-volume and long-term follow-up studies are needed.
CONCLUSIONS: RAC-IVCT or RAT-IVCT represents an alternative minimally invasive approach for selected RCC patients with level II IVCT. Selection of RAC-IVCT or RAT-IVCT is mainly based on preoperative IVCT imaging characteristics, including the presence of IVC wall invasion, the affected kidney, and establishment of the collateral circulation.
PATIENT SUMMARY: In this study we found that robotic surgeries for level II inferior vena cava thrombus were feasible and safe. Preoperative imaging played an important role in establishing an appropriate surgical plan.