Insects are posited to be declining globally. This is particularly pertinent in tropical forests, which exhibit both the highest levels of biodiversity and the highest rates of biodiversity loss. However, for the hyper-diverse tropical insects there are scant data available to evidence declines. Understanding tropical insect diversity and its response to environmental change has therefore become a challenge, but it is estimated that 80% of tropical insect species remain undescribed1. Insect biodiversity predictions are based mostly on well-studied taxa and extrapolated to other groups, but no one knows whether resilience to environmental change varies between undescribed and described species. Here, we collected staphylinid beetles from unlogged and logged tropical forests in Borneo and investigated their responses to environmental change. Out of 252 morphospecies collected, 76% were undescribed. Undescribed species showed higher community turnover, reduced abundance and decreased probability of occurrence in logged forests. Thus the unknown components of tropical insect biodiversity are likely more impacted by human-induced environmental change. If these patterns are widespread, how accurate will assessments of insect declines in the tropics be?
Invertebrates are dominant species in primary tropical rainforests, where their abundance and diversity contributes to the functioning and resilience of these globally important ecosystems. However, more than one-third of tropical forests have been logged, with dramatic impacts on rainforest biodiversity that may disrupt key ecosystem processes. We find that the contribution of invertebrates to three ecosystem processes operating at three trophic levels (litter decomposition, seed predation and removal, and invertebrate predation) is reduced by up to one-half following logging. These changes are associated with decreased abundance of key functional groups of termites, ants, beetles and earthworms, and an increase in the abundance of small mammals, amphibians and insectivorous birds in logged relative to primary forest. Our results suggest that ecosystem processes themselves have considerable resilience to logging, but the consistent decline of invertebrate functional importance is indicative of a human-induced shift in how these ecological processes operate in tropical rainforests.
The amount of carbon stored in deadwood is equivalent to about 8 per cent of the global forest carbon stocks1. The decomposition of deadwood is largely governed by climate2-5 with decomposer groups-such as microorganisms and insects-contributing to variations in the decomposition rates2,6,7. At the global scale, the contribution of insects to the decomposition of deadwood and carbon release remains poorly understood7. Here we present a field experiment of wood decomposition across 55 forest sites and 6 continents. We find that the deadwood decomposition rates increase with temperature, and the strongest temperature effect is found at high precipitation levels. Precipitation affects the decomposition rates negatively at low temperatures and positively at high temperatures. As a net effect-including the direct consumption by insects and indirect effects through interactions with microorganisms-insects accelerate the decomposition in tropical forests (3.9% median mass loss per year). In temperate and boreal forests, we find weak positive and negative effects with a median mass loss of 0.9 per cent and -0.1 per cent per year, respectively. Furthermore, we apply the experimentally derived decomposition function to a global map of deadwood carbon synthesized from empirical and remote-sensing data, obtaining an estimate of 10.9 ± 3.2 petagram of carbon per year released from deadwood globally, with 93 per cent originating from tropical forests. Globally, the net effect of insects may account for 29 per cent of the carbon flux from deadwood, which suggests a functional importance of insects in the decomposition of deadwood and the carbon cycle.