Displaying publications 1 - 20 of 64 in total

  1. Wijedasa LS, Posa MR, Clements GR
    Nature, 2015 Nov 19;527(7578):305.
    PMID: 26581283 DOI: 10.1038/527305b
  2. Laurance SG, Laurance WF
    Nature, 2015 Nov 19;527(7578):305.
    PMID: 26581280 DOI: 10.1038/527305a
  3. Munir AB, Muhammad-Sukki F, Bani NA
    Nature, 2016 Jan 28;529(7587):466.
    PMID: 26819032 DOI: 10.1038/529466e
  4. Merckx VS, Hendriks KP, Beentjes KK, Mennes CB, Becking LE, Peijnenburg KT, et al.
    Nature, 2015 Aug 20;524(7565):347-50.
    PMID: 26266979 DOI: 10.1038/nature14949
    Tropical mountains are hot spots of biodiversity and endemism, but the evolutionary origins of their unique biotas are poorly understood. In varying degrees, local and regional extinction, long-distance colonization, and local recruitment may all contribute to the exceptional character of these communities. Also, it is debated whether mountain endemics mostly originate from local lowland taxa, or from lineages that reach the mountain by long-range dispersal from cool localities elsewhere. Here we investigate the evolutionary routes to endemism by sampling an entire tropical mountain biota on the 4,095-metre-high Mount Kinabalu in Sabah, East Malaysia. We discover that most of its unique biodiversity is younger than the mountain itself (6 million years), and comprises a mix of immigrant pre-adapted lineages and descendants from local lowland ancestors, although substantial shifts from lower to higher vegetation zones in this latter group were rare. These insights could improve forecasts of the likelihood of extinction and 'evolutionary rescue' in montane biodiversity hot spots under climate change scenarios.
  5. Singh R, Low ET, Ooi LC, Ong-Abdullah M, Ting NC, Nagappan J, et al.
    Nature, 2013 Aug 15;500(7462):340-4.
    PMID: 23883930 DOI: 10.1038/nature12356
    A key event in the domestication and breeding of the oil palm Elaeis guineensis was loss of the thick coconut-like shell surrounding the kernel. Modern E. guineensis has three fruit forms, dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), a hybrid between dura and pisifera. The pisifera palm is usually female-sterile. The tenera palm yields far more oil than dura, and is the basis for commercial palm oil production in all of southeast Asia. Here we describe the mapping and identification of the SHELL gene responsible for the different fruit forms. Using homozygosity mapping by sequencing, we found two independent mutations in the DNA-binding domain of a homologue of the MADS-box gene SEEDSTICK (STK, also known as AGAMOUS-LIKE 11), which controls ovule identity and seed development in Arabidopsis. The SHELL gene is responsible for the tenera phenotype in both cultivated and wild palms from sub-Saharan Africa, and our findings provide a genetic explanation for the single gene hybrid vigour (or heterosis) attributed to SHELL, via heterodimerization. This gene mutation explains the single most important economic trait in oil palm, and has implications for the competing interests of global edible oil production, biofuels and rainforest conservation.
  6. Singh R, Ong-Abdullah M, Low ET, Manaf MA, Rosli R, Nookiah R, et al.
    Nature, 2013 Aug 15;500(7462):335-9.
    PMID: 23883927 DOI: 10.1038/nature12309
    Oil palm is the most productive oil-bearing crop. Although it is planted on only 5% of the total world vegetable oil acreage, palm oil accounts for 33% of vegetable oil and 45% of edible oil worldwide, but increased cultivation competes with dwindling rainforest reserves. We report the 1.8-gigabase (Gb) genome sequence of the African oil palm Elaeis guineensis, the predominant source of worldwide oil production. A total of 1.535 Gb of assembled sequence and transcriptome data from 30 tissue types were used to predict at least 34,802 genes, including oil biosynthesis genes and homologues of WRINKLED1 (WRI1), and other transcriptional regulators, which are highly expressed in the kernel. We also report the draft sequence of the South American oil palm Elaeis oleifera, which has the same number of chromosomes (2n = 32) and produces fertile interspecific hybrids with E. guineensis but seems to have diverged in the New World. Segmental duplications of chromosome arms define the palaeotetraploid origin of palm trees. The oil palm sequence enables the discovery of genes for important traits as well as somaclonal epigenetic alterations that restrict the use of clones in commercial plantings, and should therefore help to achieve sustainability for biofuels and edible oils, reducing the rainforest footprint of this tropical plantation crop.
  7. Abbott A, Cyranoski D, Masood E
    Nature, 2006 Nov 2;444(7115):20-1.
    PMID: 17080056
  8. Cyranoski D
    Nature, 2005 Aug 4;436(7051):620-1.
    PMID: 16079812
  9. Cyranoski D
    Nature, 2005 Aug 11;436(7052):884-5.
    PMID: 16136648
  10. Nature, 2005 Aug 11;436(7052):754.
    PMID: 16094324
  11. Volkov I, Banavar JR, He F, Hubbell SP, Maritan A
    Nature, 2005 Dec 1;438(7068):658-61.
    PMID: 16319890
    The recurrent patterns in the commonness and rarity of species in ecological communities--the relative species abundance--have puzzled ecologists for more than half a century. Here we show that the framework of the current neutral theory in ecology can easily be generalized to incorporate symmetric density dependence. We can calculate precisely the strength of the rare-species advantage that is needed to explain a given RSA distribution. Previously, we demonstrated that a mechanism of dispersal limitation also fits RSA data well. Here we compare fits of the dispersal and density-dependence mechanisms for empirical RSA data on tree species in six New and Old World tropical forests and show that both mechanisms offer sufficient and independent explanations. We suggest that RSA data cannot by themselves be used to discriminate among these explanations of RSA patterns--empirical studies will be required to determine whether RSA patterns are due to one or the other mechanism, or to some combination of both.
  12. Cyranoski D
    Nature, 2003 Jul 10;424(6945):118.
    PMID: 12853917
  13. Swinbanks D
    Nature, 1997 Sep 25;389(6649):321.
    PMID: 9311764
Related Terms
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links