Displaying publications 1 - 20 of 21 in total

Abstract:
Sort:
  1. Che Hasan R, Ierodiaconou D, Laurenson L, Schimel A
    PLoS One, 2014;9(5):e97339.
    PMID: 24824155 DOI: 10.1371/journal.pone.0097339
    Multibeam echosounders (MBES) are increasingly becoming the tool of choice for marine habitat mapping applications. In turn, the rapid expansion of habitat mapping studies has resulted in a need for automated classification techniques to efficiently map benthic habitats, assess confidence in model outputs, and evaluate the importance of variables driving the patterns observed. The benthic habitat characterisation process often involves the analysis of MBES bathymetry, backscatter mosaic or angular response with observation data providing ground truth. However, studies that make use of the full range of MBES outputs within a single classification process are limited. We present an approach that integrates backscatter angular response with MBES bathymetry, backscatter mosaic and their derivatives in a classification process using a Random Forests (RF) machine-learning algorithm to predict the distribution of benthic biological habitats. This approach includes a method of deriving statistical features from backscatter angular response curves created from MBES data collated within homogeneous regions of a backscatter mosaic. Using the RF algorithm we assess the relative importance of each variable in order to optimise the classification process and simplify models applied. The results showed that the inclusion of the angular response features in the classification process improved the accuracy of the final habitat maps from 88.5% to 93.6%. The RF algorithm identified bathymetry and the angular response mean as the two most important predictors. However, the highest classification rates were only obtained after incorporating additional features derived from bathymetry and the backscatter mosaic. The angular response features were found to be more important to the classification process compared to the backscatter mosaic features. This analysis indicates that integrating angular response information with bathymetry and the backscatter mosaic, along with their derivatives, constitutes an important improvement for studying the distribution of benthic habitats, which is necessary for effective marine spatial planning and resource management.
    Matched MeSH terms: Geographic Mapping*
  2. Danylo O, Pirker J, Lemoine G, Ceccherini G, See L, McCallum I, et al.
    Sci Data, 2021 03 30;8(1):96.
    PMID: 33785753 DOI: 10.1038/s41597-021-00867-1
    In recent decades, global oil palm production has shown an abrupt increase, with almost 90% produced in Southeast Asia alone. To understand trends in oil palm plantation expansion and for landscape-level planning, accurate maps are needed. Although different oil palm maps have been produced using remote sensing in the past, here we use Sentinel 1 imagery to generate an oil palm plantation map for Indonesia, Malaysia and Thailand for the year 2017. In addition to location, the age of the oil palm plantation is critical for calculating yields. Here we have used a Landsat time series approach to determine the year in which the oil palm plantations are first detected, at which point they are 2 to 3 years of age. From this, the approximate age of the oil palm plantation in 2017 can be derived.
    Matched MeSH terms: Geographic Mapping*
  3. Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, et al.
    Science, 2013 Nov 15;342(6160):850-3.
    PMID: 24233722 DOI: 10.1126/science.1244693
    Quantification of global forest change has been lacking despite the recognized importance of forest ecosystem services. In this study, Earth observation satellite data were used to map global forest loss (2.3 million square kilometers) and gain (0.8 million square kilometers) from 2000 to 2012 at a spatial resolution of 30 meters. The tropics were the only climate domain to exhibit a trend, with forest loss increasing by 2101 square kilometers per year. Brazil's well-documented reduction in deforestation was offset by increasing forest loss in Indonesia, Malaysia, Paraguay, Bolivia, Zambia, Angola, and elsewhere. Intensive forestry practiced within subtropical forests resulted in the highest rates of forest change globally. Boreal forest loss due largely to fire and forestry was second to that in the tropics in absolute and proportional terms. These results depict a globally consistent and locally relevant record of forest change.
    Matched MeSH terms: Geographic Mapping*
  4. Md Bohari NF, Sabri NF, Wan Rasdi WND, Mohd Radzi NA, Bakri NN
    Asia Pac J Public Health, 2020 12 24;33(2-3):227-233.
    PMID: 33356376 DOI: 10.1177/1010539520982718
    Although geographic information system-based studies are particularly increasing in other sectors, few have embraced their full potential in health services allocation in Malaysia. This study aimed to produce a visual map on the distribution of smoking cessation clinics (SCCs) in Malaysia and analyze its pattern against the national population of smokers. SCC addresses were obtained from the government website and mapped using geographic information system tools. A total of 199 and 449 private and public SCCs was mapped throughout the country, respectively. The lowest SCC to smoker population ratio was in the state of Negeri Sembilan with 1:3000. The highest SCC to smoker population ratio was in Sabah with 1 SCC for 15 000 smokers. Almost 70% of SCCs were primary health clinics. Smoking cessation clinics were distributed throughout all the states in Malaysia except the state of Sabah.
    Matched MeSH terms: Geographic Mapping*
  5. Bakhshipour Z, Huat BB, Ibrahim S, Asadi A, Kura NU
    ScientificWorldJournal, 2013;2013:629476.
    PMID: 24501583 DOI: 10.1155/2013/629476
    This work describes the application of the electrical resistivity (ER) method to delineating subsurface structures and cavities in Kuala Lumpur Limestone within the Batu Cave area of Selangor Darul Ehsan, Malaysia. In all, 17 ER profiles were measured by using a Wenner electrode configuration with 2 m spacing. The field survey was accompanied by laboratory work, which involves taking resistivity measurements of rock, soil, and water samples taken from the field to obtain the formation factor. The relationship between resistivity and the formation factor and porosity for all the samples was established. The porosity values were plotted and contoured. A 2-dimensional and 3-dimensional representation of the subsurface topography of the area was prepared through use of commercial computer software. The results show the presence of cavities and sinkholes in some parts of the study area. This work could help engineers and environmental managers by providing the information necessary to produce a sustainable management plan in order to prevent catastrophic collapses of structures and other related geohazard problems.
    Matched MeSH terms: Geographic Mapping*
  6. Peterson AT
    Asia Pac J Public Health, 2015 Mar;27(2):NP824-32.
    PMID: 23343646 DOI: 10.1177/1010539512471965
    Nipah virus is a highly pathogenic but poorly known paramyxovirus from South and Southeast Asia. In spite of the risks that it poses to human health, the geography and ecology of its occurrence remain little understood-the virus is basically known from Bangladesh and peninsular Malaysia, and little in between. In this contribution, I use documented occurrences of the virus to develop ecological niche-based maps summarizing its likely broader occurrence-although rangewide maps could not be developed that had significant predictive abilities, reflecting minimal sample sizes available, maps within Bangladesh were quite successful in identifying areas in which the virus is predictably present and likely transmitted.
    Matched MeSH terms: Geographic Mapping*
  7. Grill G, Lehner B, Thieme M, Geenen B, Tickner D, Antonelli F, et al.
    Nature, 2019 05;569(7755):215-221.
    PMID: 31068722 DOI: 10.1038/s41586-019-1111-9
    Free-flowing rivers (FFRs) support diverse, complex and dynamic ecosystems globally, providing important societal and economic services. Infrastructure development threatens the ecosystem processes, biodiversity and services that these rivers support. Here we assess the connectivity status of 12 million kilometres of rivers globally and identify those that remain free-flowing in their entire length. Only 37 per cent of rivers longer than 1,000 kilometres remain free-flowing over their entire length and 23 per cent flow uninterrupted to the ocean. Very long FFRs are largely restricted to remote regions of the Arctic and of the Amazon and Congo basins. In densely populated areas only few very long rivers remain free-flowing, such as the Irrawaddy and Salween. Dams and reservoirs and their up- and downstream propagation of fragmentation and flow regulation are the leading contributors to the loss of river connectivity. By applying a new method to quantify riverine connectivity and map FFRs, we provide a foundation for concerted global and national strategies to maintain or restore them.
    Matched MeSH terms: Geographic Mapping*
  8. Ruwaimana M, Satyanarayana B, Otero V, M Muslim A, Syafiq A M, Ibrahim S, et al.
    PLoS One, 2018;13(7):e0200288.
    PMID: 30020959 DOI: 10.1371/journal.pone.0200288
    Satellite data and aerial photos have proved to be useful in efficient conservation and management of mangrove ecosystems. However, there have been only very few attempts to demonstrate the ability of drone images, and none so far to observe vegetation (species-level) mapping. The present study compares the utility of drone images (DJI-Phantom-2 with SJ4000 RGB and IR cameras, spatial resolution: 5cm) and satellite images (Pleiades-1B, spatial resolution: 50cm) for mangrove mapping-specifically in terms of image quality, efficiency and classification accuracy, at the Setiu Wetland in Malaysia. Both object- and pixel-based classification approaches were tested (QGIS v.2.12.3 with Orfeo Toolbox). The object-based classification (using a manual rule-set algorithm) of drone imagery with dominant land-cover features (i.e. water, land, Avicennia alba, Nypa fruticans, Rhizophora apiculata and Casuarina equisetifolia) provided the highest accuracy (overall accuracy (OA): 94.0±0.5% and specific producer accuracy (SPA): 97.0±9.3%) as compared to the Pleiades imagery (OA: 72.2±2.7% and SPA: 51.9±22.7%). In addition, the pixel-based classification (using a maximum likelihood algorithm) of drone imagery provided better accuracy (OA: 90.0±1.9% and SPA: 87.2±5.1%) compared to the Pleiades (OA: 82.8±3.5% and SPA: 80.4±14.3%). Nevertheless, the drone provided higher temporal resolution images, even on cloudy days, an exceptional benefit when working in a humid tropical climate. In terms of the user-costs, drone costs are much higher, but this becomes advantageous over satellite data for long-term monitoring of a small area. Due to the large data size of the drone imagery, its processing time was about ten times greater than that of the satellite image, and varied according to the various image processing techniques employed (in pixel-based classification, drone >50 hours, Pleiades <5 hours), constituting the main disadvantage of UAV remote sensing. However, the mangrove mapping based on the drone aerial photos provided unprecedented results for Setiu, and was proven to be a viable alternative to satellite-based monitoring/management of these ecosystems. The improvements of drone technology will help to make drone use even more competitive in the future.
    Matched MeSH terms: Geographic Mapping
  9. Dickin SK, Schuster-Wallace CJ, Elliott SJ
    PLoS One, 2013;8(5):e63584.
    PMID: 23667642 DOI: 10.1371/journal.pone.0063584
    The Water-associated Disease Index (WADI) was developed to identify and visualize vulnerability to different water-associated diseases by integrating a range of social and biophysical determinants in map format. In this study vulnerability is used to encompass conditions of exposure, susceptibility, and differential coping capacity to a water-associated health hazard. By assessing these conditions, the tool is designed to provide stakeholders with an integrated and long-term understanding of subnational vulnerabilities to water-associated disease and contribute to intervention strategies to reduce the burden of illness. The objective of this paper is to describe and validate the WADI tool by applying it to dengue. A systemic ecohealth framework that considers links between people, the environment and health was applied to identify secondary datasets, populating the index with components including climate conditions, land cover, education status and water use practices. Data were aggregated to create composite indicators of exposure and of susceptibility in a Geographic Information System (GIS). These indicators were weighted by their contribution to dengue vulnerability, and the output consisted of an overall index visualized in map format. The WADI was validated in this Malaysia case study, demonstrating a significant association with dengue rates at a sub-national level, and illustrating a range of factors that drive vulnerability to the disease within the country. The index output indicated high vulnerability to dengue in urban areas, especially in the capital Kuala Lumpur and surrounding region. However, in other regions, vulnerability to dengue varied throughout the year due to the influence of seasonal climate conditions, such as monsoon patterns. The WADI tool complements early warning models for water-associated disease by providing upstream information for planning prevention and control approaches, which increasingly require a comprehensive and geographically broad understanding of vulnerability for implementation.
    Matched MeSH terms: Geographic Mapping*
  10. Fornace KM, Surendra H, Abidin TR, Reyes R, Macalinao MLM, Stresman G, et al.
    Int J Health Geogr, 2018 06 18;17(1):21.
    PMID: 29914506 DOI: 10.1186/s12942-018-0141-0
    BACKGROUND: Identifying fine-scale spatial patterns of disease is essential for effective disease control and elimination programmes. In low resource areas without formal addresses, novel strategies are needed to locate residences of individuals attending health facilities in order to efficiently map disease patterns. We aimed to assess the use of Android tablet-based applications containing high resolution maps to geolocate individual residences, whilst comparing the functionality, usability and cost of three software packages designed to collect spatial information.

    RESULTS: Using Open Data Kit GeoODK, we designed and piloted an electronic questionnaire for rolling cross sectional surveys of health facility attendees as part of a malaria elimination campaign in two predominantly rural sites in the Rizal, Palawan, the Philippines and Kulon Progo Regency, Yogyakarta, Indonesia. The majority of health workers were able to use the tablets effectively, including locating participant households on electronic maps. For all households sampled (n = 603), health facility workers were able to retrospectively find the participant household using the Global Positioning System (GPS) coordinates and data collected by tablet computers. Median distance between actual house locations and points collected on the tablet was 116 m (IQR 42-368) in Rizal and 493 m (IQR 258-886) in Kulon Progo Regency. Accuracy varied between health facilities and decreased in less populated areas with fewer prominent landmarks.

    CONCLUSIONS: Results demonstrate the utility of this approach to develop real-time high-resolution maps of disease in resource-poor environments. This method provides an attractive approach for quickly obtaining spatial information on individuals presenting at health facilities in resource poor areas where formal addresses are unavailable and internet connectivity is limited. Further research is needed on how to integrate these with other health data management systems and implement in a wider operational context.

    Matched MeSH terms: Geographic Mapping*
  11. Maxwell SL, Cazalis V, Dudley N, Hoffmann M, Rodrigues ASL, Stolton S, et al.
    Nature, 2020 10;586(7828):217-227.
    PMID: 33028996 DOI: 10.1038/s41586-020-2773-z
    Humanity will soon define a new era for nature-one that seeks to transform decades of underwhelming responses to the global biodiversity crisis. Area-based conservation efforts, which include both protected areas and other effective area-based conservation measures, are likely to extend and diversify. However, persistent shortfalls in ecological representation and management effectiveness diminish the potential role of area-based conservation in stemming biodiversity loss. Here we show how the expansion of protected areas by national governments since 2010 has had limited success in increasing the coverage across different elements of biodiversity (ecoregions, 12,056 threatened species, 'Key Biodiversity Areas' and wilderness areas) and ecosystem services (productive fisheries, and carbon services on land and sea). To be more successful after 2020, area-based conservation must contribute more effectively to meeting global biodiversity goals-ranging from preventing extinctions to retaining the most-intact ecosystems-and must better collaborate with the many Indigenous peoples, community groups and private initiatives that are central to the successful conservation of biodiversity. The long-term success of area-based conservation requires parties to the Convention on Biological Diversity to secure adequate financing, plan for climate change and make biodiversity conservation a far stronger part of land, water and sea management policies.
    Matched MeSH terms: Geographic Mapping*
  12. Usinowicz J, Chang-Yang CH, Chen YY, Clark JS, Fletcher C, Garwood NC, et al.
    Nature, 2017 10 05;550(7674):105-108.
    PMID: 28953870 DOI: 10.1038/nature24038
    The tropical forests of Borneo and Amazonia may each contain more tree species diversity in half a square kilometre than do all the temperate forests of Europe, North America, and Asia combined. Biologists have long been fascinated by this disparity, using it to investigate potential drivers of biodiversity. Latitudinal variation in many of these drivers is expected to create geographic differences in ecological and evolutionary processes, and evidence increasingly shows that tropical ecosystems have higher rates of diversification, clade origination, and clade dispersal. However, there is currently no evidence to link gradients in ecological processes within communities at a local scale directly to the geographic gradient in biodiversity. Here, we show geographic variation in the storage effect, an ecological mechanism that reduces the potential for competitive exclusion more strongly in the tropics than it does in temperate and boreal zones, decreasing the ratio of interspecific-to-intraspecific competition by 0.25% for each degree of latitude that an ecosystem is located closer to the Equator. Additionally, we find evidence that latitudinal variation in climate underpins these differences; longer growing seasons in the tropics reduce constraints on the seasonal timing of reproduction, permitting lower recruitment synchrony between species and thereby enhancing niche partitioning through the storage effect. Our results demonstrate that the strength of the storage effect, and therefore its impact on diversity within communities, varies latitudinally in association with climate. This finding highlights the importance of biotic interactions in shaping geographic diversity patterns, and emphasizes the need to understand the mechanisms underpinning ecological processes in greater detail than has previously been appreciated.
    Matched MeSH terms: Geographic Mapping
  13. Seibold S, Rammer W, Hothorn T, Seidl R, Ulyshen MD, Lorz J, et al.
    Nature, 2021 09;597(7874):77-81.
    PMID: 34471275 DOI: 10.1038/s41586-021-03740-8
    The amount of carbon stored in deadwood is equivalent to about 8 per cent of the global forest carbon stocks1. The decomposition of deadwood is largely governed by climate2-5 with decomposer groups-such as microorganisms and insects-contributing to variations in the decomposition rates2,6,7. At the global scale, the contribution of insects to the decomposition of deadwood and carbon release remains poorly understood7. Here we present a field experiment of wood decomposition across 55 forest sites and 6 continents. We find that the deadwood decomposition rates increase with temperature, and the strongest temperature effect is found at high precipitation levels. Precipitation affects the decomposition rates negatively at low temperatures and positively at high temperatures. As a net effect-including the direct consumption by insects and indirect effects through interactions with microorganisms-insects accelerate the decomposition in tropical forests (3.9% median mass loss per year). In temperate and boreal forests, we find weak positive and negative effects with a median mass loss of 0.9 per cent and -0.1 per cent per year, respectively. Furthermore, we apply the experimentally derived decomposition function to a global map of deadwood carbon synthesized from empirical and remote-sensing data, obtaining an estimate of 10.9 ± 3.2 petagram of carbon per year released from deadwood globally, with 93 per cent originating from tropical forests. Globally, the net effect of insects may account for 29 per cent of the carbon flux from deadwood, which suggests a functional importance of insects in the decomposition of deadwood and the carbon cycle.
    Matched MeSH terms: Geographic Mapping
  14. Ling CY, Gruebner O, Krämer A, Lakes T
    Geospat Health, 2014 Nov;9(1):131-40.
    PMID: 25545931
    Spatio-temporal patterns of dengue risk in Malaysia were studied both at the address and the sub-district level in the province of Selangor and the Federal Territory of Kuala Lumpur. We geocoded laboratory-confirmed dengue cases from the years 2008 to 2010 at the address level and further aggregated the cases in proportion to the population at risk at the sub-district level. Kulldorff's spatial scan statistic was applied for the investigation that identified changing spatial patterns of dengue cases at both levels. At the address level, spatio-temporal clusters of dengue cases were concentrated at the central and south-eastern part of the study area in the early part of the years studied. Analyses at the sub-district level revealed a consistent spatial clustering of a high number of cases proportional to the population at risk. Linking both levels assisted in the identification of differences and confirmed the presence of areas at high risk for dengue infection. Our results suggest that the observed dengue cases had both a spatial and a temporal epidemiological component, which needs to be acknowledged and addressed to develop efficient control measures, including spatially explicit vector control. Our findings highlight the importance of detailed geographical analysis of disease cases in heterogeneous environments with a focus on clustered populations at different spatial and temporal scales. We conclude that bringing together information on the spatio-temporal distribution of dengue cases with a deeper insight of linkages between dengue risk, climate factors and land use constitutes an important step towards the development of an effective risk management strategy.
    Matched MeSH terms: Geographic Mapping
  15. Saleh MA, Ramli AT, Alajerami Y, Aliyu AS
    J Environ Radioact, 2013 Oct;124:130-40.
    PMID: 23727880 DOI: 10.1016/j.jenvrad.2013.04.013
    Extensive environmental survey and measurements of gamma radioactivity in the soil samples collected from Segamat District were conducted. Two gamma detectors were used for the measurements of background radiation in the area and the results were used in the computation of the mean external radiation dose rate and mean weighted dose rate, which are 276 nGy h(-1) and 1.169 mSv y(-1), respectively. A high purity germanium (HPGe) detector was used in the assessment of activity concentrations of (232)Th, (226)Ra and (40)K. The results of the gamma spectrometry range from 11 ± 1 to 1210 ± 41 Bq kg(-1) for (232)Th, 12 ± 1 to 968 ± 27 Bq kg(-1) for (226)Ra, and 12 ± 2 to 2450 ± 86 Bq kg(-1) for (40)K. Gross alpha and gross beta activity concentrations range from 170 ± 50 to 4360 ± 170 Bq kg(-1) and 70 ± 20 to 4690 ± 90 Bq kg(-1), respectively. These results were used in the plotting of digital maps (using ARCGIS 9.3) for isodose. The results are compared with values giving in UNSCEAR 2000.
    Matched MeSH terms: Geographic Mapping
  16. Boey K, Shiokawa K, Rajeev S
    PLoS Negl Trop Dis, 2019 08;13(8):e0007499.
    PMID: 31398190 DOI: 10.1371/journal.pntd.0007499
    BACKGROUND: The role of rodents in Leptospira epidemiology and transmission is well known worldwide. Rats are known to carry different pathogenic serovars of Leptospira spp. capable of causing disease in humans and animals. Wild rats (Rattus spp.), especially the Norway/brown rat (Rattus norvegicus) and the black rat (R. rattus), are the most important sources of Leptospira infection, as they are abundant in urban and peridomestic environments. In this study, we compiled and summarized available data in the literature on global prevalence of Leptospira exposure and infection in rats, as well as compared the global distribution of Leptospira spp. in rats with respect to prevalence, geographic location, method of detection, diversity of serogroups/serovars, and species of rat.

    METHODS: We conducted a thorough literature search using PubMed without restrictions on publication date as well as Google Scholar to manually search for other relevant articles. Abstracts were included if they described data pertaining to Leptospira spp. in rats (Rattus spp.) from any geographic region around the world, including reviews. The data extracted from the articles selected included the author(s), year of publication, geographic location, method(s) of detection used, species of rat(s), sample size, prevalence of Leptospira spp. (overall and within each rat species), and information on species, serogroups, and/or serovars of Leptospira spp. detected.

    FINDINGS: A thorough search on PubMed retrieved 303 titles. After screening the articles for duplicates and inclusion/exclusion criteria, as well as manual inclusion of relevant articles, 145 articles were included in this review. Leptospira prevalence in rats varied considerably based on geographic location, with some reporting zero prevalence in countries such as Madagascar, Tanzania, and the Faroe Islands, and others reporting as high as >80% prevalence in studies done in Brazil, India, and the Philippines. The top five countries that were reported based on number of articles include India (n = 13), Malaysia (n = 9), Brazil (n = 8), Thailand (n = 7), and France (n = 6). Methods of detecting or isolating Leptospira spp. also varied among studies. Studies among different Rattus species reported a higher Leptospira prevalence in R. norvegicus. The serovar Icterohaemorrhagiae was the most prevalent serovar reported in Rattus spp. worldwide. Additionally, this literature review provided evidence for Leptospira infection in laboratory rodent colonies within controlled environments, implicating the zoonotic potential to laboratory animal caretakers.

    CONCLUSIONS: Reports on global distribution of Leptospira infection in rats varies widely, with considerably high prevalence reported in many countries. This literature review emphasizes the need for enhanced surveillance programs using standardized methods for assessing Leptospira exposure or infection in rats. This review also demonstrated several weaknesses to the current methods of reporting the prevalence of Leptospira spp. in rats worldwide. As such, this necessitates a call for standardized protocols for the testing and reporting of such studies, especially pertaining to the diagnostic methods used. A deeper understanding of the ecology and epidemiology of Leptospira spp. in rats in urban environments is warranted. It is also pertinent for rat control programs to be proposed in conjunction with increased efforts for public awareness and education regarding leptospirosis transmission and prevention.

    Matched MeSH terms: Geographic Mapping
  17. MacNeil MA, Chapman DD, Heupel M, Simpfendorfer CA, Heithaus M, Meekan M, et al.
    Nature, 2020 07;583(7818):801-806.
    PMID: 32699418 DOI: 10.1038/s41586-020-2519-y
    Decades of overexploitation have devastated shark populations, leaving considerable doubt as to their ecological status1,2. Yet much of what is known about sharks has been inferred from catch records in industrial fisheries, whereas far less information is available about sharks that live in coastal habitats3. Here we address this knowledge gap using data from more than 15,000 standardized baited remote underwater video stations that were deployed on 371 reefs in 58 nations to estimate the conservation status of reef sharks globally. Our results reveal the profound impact that fishing has had on reef shark populations: we observed no sharks on almost 20% of the surveyed reefs. Reef sharks were almost completely absent from reefs in several nations, and shark depletion was strongly related to socio-economic conditions such as the size and proximity of the nearest market, poor governance and the density of the human population. However, opportunities for the conservation of reef sharks remain: shark sanctuaries, closed areas, catch limits and an absence of gillnets and longlines were associated with a substantially higher relative abundance of reef sharks. These results reveal several policy pathways for the restoration and management of reef shark populations, from direct top-down management of fishing to indirect improvement of governance conditions. Reef shark populations will only have a high chance of recovery by engaging key socio-economic aspects of tropical fisheries.
    Matched MeSH terms: Geographic Mapping
  18. Cámara-Leret R, Frodin DG, Adema F, Anderson C, Appelhans MS, Argent G, et al.
    Nature, 2020 08;584(7822):579-583.
    PMID: 32760001 DOI: 10.1038/s41586-020-2549-5
    New Guinea is the world's largest tropical island and has fascinated naturalists for centuries1,2. Home to some of the best-preserved ecosystems on the planet3 and to intact ecological gradients-from mangroves to tropical alpine grasslands-that are unmatched in the Asia-Pacific region4,5, it is a globally recognized centre of biological and cultural diversity6,7. So far, however, there has been no attempt to critically catalogue the entire vascular plant diversity of New Guinea. Here we present the first, to our knowledge, expert-verified checklist of the vascular plants of mainland New Guinea and surrounding islands. Our publicly available checklist includes 13,634 species (68% endemic), 1,742 genera and 264 families-suggesting that New Guinea is the most floristically diverse island in the world. Expert knowledge is essential for building checklists in the digital era: reliance on online taxonomic resources alone would have inflated species counts by 22%. Species discovery shows no sign of levelling off, and we discuss steps to accelerate botanical research in the 'Last Unknown'8.
    Matched MeSH terms: Geographic Mapping
  19. Kumar S, Neven LG, Yee WL
    J Econ Entomol, 2014 Jun;107(3):1032-44.
    PMID: 25026662
    Sweet cherries, Prunus avium (L.) L., grown in the western United States are exported to many countries around the world. Some of these countries have enforced strict quarantine rules and trade restrictions owing to concerns about the potential establishment and subsequent spread of western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), a major quarantine pest of sweet cherry. We used 1) niche models (CLIMEX and MaxEnt) to map the climatic suitability, 2) North Carolina State University-Animal and Plant Health Inspection Service Plant Pest Forecasting System to examine chilling requirement, and 3) host distribution and availability to assess the potential for establishment of R. indifferens in areas of western North America where it currently does not exist and eight current or potential fresh sweet cherry markets: Colombia, India, Indonesia, Malaysia, Taiwan, Thailand, Venezuela, and Vietnam. Results from niche models conformed well to the current distribution of R. indifferens in western North America. MaxEnt and CLIMEX models had high performance and predicted climatic suitability in some of the countries (e.g., Andean range in Colombia and Venezuela, northern and northeastern India, central Taiwan, and parts of Vietnam). However, our results showed no potential for establishment of R. indifferens in Colombia, Indonesia, Malaysia, Taiwan, Thailand, Venezuela, and Vietnam when the optimal chilling requirement to break diapause (minimum temperature < or = 3 degree C for at least 15 wk) was used as the criterion for whether establishment can occur. Furthermore, these countries have no host plant species available for R. indifferens. Our results can be used to make scientifically informed international trade decisions and negotiations by policy makers.
    Matched MeSH terms: Geographic Mapping
  20. Hassan H, Shohaimi S, Hashim NR
    Geospat Health, 2012 Nov;7(1):21-5.
    PMID: 23242677
    Dengue fever is a recurring public health problem afflicting thousands of Malaysians annually. In this paper, the risk map for dengue fever in the peninsular Malaysian states of Selangor and Kuala Lumpur was modelled based on co-kriging and geographical information systems. Using population density and rainfall as the model's only input factors, the area with the highest risk for dengue infection was given as Gombak and Petaling, two districts located on opposite sides of Kuala Lumpur city that was also included in the risk assessment. Comparison of the modelled risk map with the dengue case dataset of 2010, obtained from the Ministry of Health of Malaysia, confirmed that the highest number of cases had been found in an area centred on Kuala Lumpur as predicted our risk profiling.
    Matched MeSH terms: Geographic Mapping
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links