The Academy of Sciences Malaysia and the Malaysian Industry-Government group for High Technology has been working hard to project the future of big data and neurotechnology usage up to the year 2050. On the 19 September 2016, the International Brain Initiative was announced by US Under Secretary of State Thomas Shannon at a meeting that accompanied the United Nations' General Assembly in New York City. This initiative was seen as an important effort but deemed costly for developing countries. At a concurrent meeting hosted by the US National Science Foundation at Rockefeller University, numerous countries discussed this massive project, which would require genuine collaboration between investigators in the realms of neuroethics. Malaysia's readiness to embark on using big data in the field of brain, mind and neurosciences is to prepare for the 4th Industrial Revolution which is an important investment for the country's future. The development of new strategies has also been encouraged by the involvement of the Society of Brain Mapping and Therapeutics, USA and the International Neuroinformatics Coordinating Facility.
Urban areas worldwide are in the race to become smarter, and the Kingdom of Saudi Arabia (KSA) is no exception. Many of these have envisaged a chance to establish devoted municipal access networks to assist all kinds of city administration and preserve services needing data connectivity. Organizations unanimously concentrate on sustainability issues with key features of general trends, particularly the combination of the 3Rs (reduce waste, reuse and recycle resources). This paper demonstrates how the incorporation of the Internet of Things (IoT) with data access networks, geographic information systems and combinatorial optimization can contribute to enhancing cities' administration systems. A waste-gathering approach based on supplying smart bins is introduced by using an IoT prototype embedded with sensors, which can read and convey bin volume data over the Internet. However, from another perspective, the population and residents' attitudes directly affect the control of the waste management system. The conventional waste collection system does not cover all areas in the city. It works based on a planned scheme that is implemented by the authorized organization focused on specific popular and formal areas. The conventional system cannot observe a real-time update of the bin status to recognize whether the waste level condition is 'full,' 'not full,' or 'empty.' This paper uses IoT in the container and trucks that secure the overflow and separation of waste. Waste source locations and population density influence the volume of waste generation, especially waste food, as it has the highest amount of waste generation. The open public area and the small space location problems are solved by proposing different truck sizes based on the waste type. Each container is used for one type of waste, such as food, plastic and others, and uses the optimization algorithm to calculate and find the optimal route toward the full waste container. In this work, the situations in KSA are evaluated, and relevant aspects are explored. Issues relating to the sustainability of organic waste management are conceptually analyzed. A genetic-based optimization algorithm for waste collection transportation enhances the performance of waste-gathering truck management. The selected routes based on the volume status and free spaces of the smart bins are the most effective through those obtainable towards the urgent smart bin targets. The proposed system outperforms other systems by reducing the number of locations and smart bins that have to be visited by 46% for all waste types, whereas the conventional and existing systems have to visit all locations every day, resulting in high cost and consumption time.
The sharing of open-access neuroimaging data has increased significantly during the last few years. Sharing neuroimaging data is crucial to accelerating scientific advancement, particularly in the field of neuroscience. A number of big initiatives that will increase the amount of available neuroimaging data are currently in development. The Big Brain Data Initiative project was started by Universiti Sains Malaysia as the first neuroimaging data repository platform in Malaysia for the purpose of data sharing. In order to ensure that the neuroimaging data in this project is accessible, usable, and secure, as well as to offer users high-quality data that can be consistently accessed, we first came up with good data stewardship practices. Then, we developed MyneuroDB, an online repository database system for data sharing purposes. Here, we describe the Big Brain Data Initiative and MyneuroDB, a data repository that provides the ability to openly share neuroimaging data, currently including magnetic resonance imaging (MRI), electroencephalography (EEG), and magnetoencephalography (MEG), following the FAIR principles for data sharing.
Universiti Sains Malaysia has started the Big Brain Data Initiative project since the last two years as brain mapping techniques have proven to be important in understanding the molecular, cellular and functional mechanisms of the brain. This Big Brain Data Initiative can be a platform for neurophysicians and neurosurgeons, psychiatrists, psychologists, cognitive neuroscientists, neurotechnologists and other researchers to improve brain mapping techniques. Data collection from a cohort of multiracial population in Malaysia is important for present and future research and finding cure for neurological and mental illness. Malaysia is one of the participant of the Global Brain Consortium (GBC) supported by the World Health Organization. This project is a part of its contribution via the third GBC goal which is influencing the policy process within and between high-income countries and low- and middle-income countries, such as pathways for fair data-sharing of multi-modal imaging data, starting with electroencephalographic data.