Coagulation and flocculation using bittern coagulant are effective methods for processing batik industrial wastewater containing heavy metals and high turbidity. Bittern as residual seawater product from salt production can be used as a natural coagulant as it contains magnesium (Mg2+), chloride (Cl-), and sulfate ions (SO4 2-) which can react with Pb2+ and turbidity to produce precipitation. This study focused on Pb2+ and turbidity removal from batik wastewater by introducing different variations of coagulant doses and variations in fast-stirring speed. Bittern coagulant dosage (v/v) of 5%, 15%, 25%, and 35% were used while fast-stirring speed were 55 rpm, 90 rpm, and 125 rpm. Results of this experiment showed that variations of coagulants and stirring speed to give Pb2+ maximum removal of 99.3% happened when coagulant dose and stirring speed at 35% and 55 rpm, while maximum turbidity removal at 97% happened when coagulant dose and stirring speed was 15 % and 125 rpm, respectively. Optimum dose using Response Surface Methodology (RSM) was at coagulant dose of 25% with 55 rpm, of which Pb2+ and turbidity removal were 99% and 93%, respectively.
The present study investigated the utilization of blood clam shells as a potential substitute for conventional media, as well as the influence of the acclimation time on the efficacy of an intermittent slow sand filter (ISSF) in the treatment of real domestic wastewater. ISSF was operated with 16 h on and 8 h off, focusing on the parameters of turbidity, ammonia, and phosphate. Two media combinations (only blood clam shells [CC] and sand + blood clam shells [SC]) were operated under two different acclimatization periods (14 and 28 d). Results showed that SC medium exhibited significantly higher removal of turbidity (p 0.05) removal of ammonia (23.12 ± 20.2 % vs. 16.77 ± 16.8 %) and phosphate (18.03 ± 11.96 % vs 13.48 ± 12 %). Comparing the acclimatization periods, the 28 d of acclimatization period showed higher overall performances than the 14 d. Further optimizations need to be conducted to obtain an effluent value below the national permissible limit, since the ammonia and phosphate parameters are still slightly higher. SEM analysis confirmed the formation of biofilm on both mediums after 28 d of acclimatization; with further analysis of schmutzdecke formation need to be carried out to enrich the results.