METHOD: This study recruited 182 children between the ages of 9 years to 18 years. BA estimation of the left-hand anteroposterior radiographs were performed by two experienced radiologists using the Greulich-Pyle method.
RESULTS: The BA estimates from two radiologists had very high interobserver reliability (ICC 0.937) and a strong positive interobserver correlation (r > 0.90). The GP method, significantly and consistently underestimated chronological age (CA) by 0.7, 0.6 and 0.7 years in overall children, boys and girls respectively with minimal errors. Mean absolute error and root of mean squared error for overall children was 1.5 and 2.2 years respectively, while mean absolute percentage error was 11.6%. This underestimation was consistent across all age groups but was statistically significant only at 13-13.9 and 17-18.9 years old age groups.
CONCLUSION: Despite high interobserver reliability of BA estimation using the GP Atlas, this method consistently underestimates the age of the child in all children to a significant degree, for both boys and girls across all age groups, with an acceptably low level of error metrics. Our findings suggest that locally validated GP Atlas or other type of assessments (artificial intelligence or machine learning) are needed for assessment of BA to accurately predict CA, since current GP Atlas standards significantly underestimated chronological age with minimal error for children in Sabah. A larger population-based study would be necessary for establishing a validated atlas of a bone age in Malaysia.
OBJECTIVES: To determine the a) aetiology, b) factors associated with bacterial pneumonia and c) association between co-infections (bacteria + virus) and severity of disease, in children admitted with severe pneumonia.
METHODS: A prospective cohort study involving children aged 1-month to 5-years admitted with very severe pneumonia, as per the WHO definition, over 2 years. Induced sputum and blood obtained within 24 hrs of admission were examined via PCR, immunofluorescence and culture to detect 17 bacteria/viruses. A designated radiologist read the chest radiographs.
RESULTS: Three hundred patients with a mean (SD) age of 14 (±15) months old were recruited. Significant pathogens were detected in 62% of patients (n = 186). Viruses alone were detected in 23.7% (n = 71) with rhinovirus (31%), human metapneumovirus (HMP) [22.5%] and respiratory syncytial virus (RSV) [16.9%] being the commonest. Bacteria alone was detected in 25% (n = 75) with Haemophilus influenzae (29.3%), Staphylococcus aureus (24%) and Streptococcus pneumoniae (22.7%) being the commonest. Co-infections were seen in 13.3% (n = 40) of patients. Male gender (AdjOR 1.84 [95% CI 1.10, 3.05]) and presence of crepitations (AdjOR 2.27 [95% CI 1.12, 4.60]) were associated with bacterial infection. C-reactive protein (CRP) [p = 0.007]) was significantly higher in patients with co-infections but duration of hospitalization (p = 0.77) and requirement for supplemental respiratory support (p = 0.26) were not associated with co-infection.
CONCLUSIONS: Bacteria remain an important cause of very severe pneumonia in developing countries with one in four children admitted isolating bacteria alone. Male gender and presence of crepitations were significantly associated with bacterial aetiology. Co-infection was associated with a higher CRP but no other parameters of severe clinical illness.