Displaying all 7 publications

Abstract:
Sort:
  1. Saokaew S, Tassaneeyakul W, Maenthaisong R, Chaiyakunapruk N
    PLoS One, 2014;9(4):e94294.
    PMID: 24732692 DOI: 10.1371/journal.pone.0094294
    BACKGROUND: Stevens-Johnson syndrome (SJS) and Toxic Epidermal Necrolysis (TEN), caused by allopurinol therapy, are strongly associated with the human leukocyte antigen (HLA), HLA-B*5801. Identification of HLA-B*5801 genotype before prescribing allopurinol offers the possibility of avoiding allopurinol-induced SJS/TEN. As there is a paucity of evidence about economic value of such testing, this study aims to determine the cost-effectiveness of HLA-B*5801 testing compared with usual care (no genetic testing) before allopurinol administration in Thailand.
    METHODS AND FINDING: A decision analytical and Markov model was used to estimate life time costs and outcomes represented as quality adjusted life years (QALYs) gained. The model was populated with relevant information of the association between gene and allopurinol-induced SJS/TEN, test characteristics, costs, and epidemiologic data for Thailand from a societal perspective. Input data were obtained from the literature and a retrospective database analysis. The results were expressed as incremental cost per QALY gained. A base-case analysis was performed for patients at age 30. A series of sensitivity analyses including scenario, one-way, and probabilistic sensitivity analyses were constructed to explore the robustness of the findings. Based on a hypothetical cohort of 1,000 patients, the incremental total cost was 923,919 THB (USD 29,804) and incremental QALY was 5.89 with an ICER of 156,937.04 THB (USD 5,062) per QALY gained. The cost of gout management, incidence of SJS/TEN, case fatality rate of SJS/TEN, and cost of genetic testing are considered very influential parameters on the cost-effectiveness value of HLA-B*5801 testing.
    CONCLUSIONS: The genetic testing for HLA-B*5801 before allopurinol administration is considered a highly potential cost-effective intervention in Thailand. The findings are sensitive to a number of factors. In addition to cost-effectiveness findings, consideration of other factors including ethical, legal, and social implications is needed for an informed policy decision making.
  2. Tassaneeyakul W, Kumar S, Gaysonsiri D, Kaewkamson T, Khuroo A, Tangsucharit P, et al.
    Int J Clin Pharmacol Ther, 2010 Sep;48(9):614-20.
    PMID: 20860915
    OBJECTIVES: To compare the bioavailability of two risperidone orodispersible tablet products, Risperidone 1 mg Mouth dissolving tablet, Ranbaxy (Malaysia) Sdn. Bhd., Malaysia, as a test product and Risperdal 1 mg Quicklet, Janssen Ortho LLC, Gurabo, Puerto Rico, as a reference product, in healthy male volunteers under fasting condition.

    MATERIALS AND METHODS: A randomized, 2-treatment, 2-period, 2-sequence, single dose, crossover with a washout period of 2 weeks, was conducted in 24 healthy Thai male volunteers. Blood samples were collected at 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 3.5, 4, 5, 6, 8, 10, 12, 24, 36, 48, 72 and 96 h following drug administration. Plasma concentrations of risperidone and 9-hydroxyrisperidone were determined using a validated LC-MS-MS method. The pharmacokinetic parameters of risperidone and 9-hydroxyrisperidone were determined using a non-compartmental model.

    RESULTS: The geometric means ratios (%) and 90% confidence interval (CI) of the test and reference products for the log-transformed pharmacokinetic parameters, Cmax, AUC0-t and AUC0-inf of risperidone were 104.49 % (92.79% - 117.66%), 100.96 % (92.15% - 110.61 %) and 97.99 % (90.72% - 105.85%). The 90% CI of geometric means ratios of the test and reference products for the log-transformed pharmacokinetic parameters, Cmax, AUC0-t and AUC0-inf of 9-hydroxyrisperidone were 97.00%, 96.97% and 97.49%.

    CONCLUSIONS: The 90% CI for the geometric means ratios (test/reference) of the log-trasformed Cmax, AUC0-t and AUC0-inf of risperidone and its major active metabolite were within the bioequivalence acceptance criteria of 80% - 125% of the US-FDA.

  3. Leong SL, Chaiyakunapruk N, Tassaneeyakul W, Arunmanakul P, Nathisuwan S, Lee SWH
    Int J Cardiol, 2019 04 01;280:190-197.
    PMID: 30594345 DOI: 10.1016/j.ijcard.2018.12.049
    BACKGROUND: Exploration on genetic roles in antineoplastic-related cardiovascular toxicity has increased with the advancement of genotyping technology. However, knowledge on the extent of genetic determinants in affecting the susceptibility to the cardiovascular toxicities of antineoplastic is limited. This study aims to identify potential single nucleotide polymorphism (SNP) in predicting non-anthracycline antineoplastic-related cardiovascular toxicity.

    METHODS: We systematically searched for original research in PubMed, Cochrane Central Register of Controlled Studies, CINAHL Plus, EMBASE and HuGE Navigator from database inception until January 2018. Studies on association between polymorphism and antineoplastic-induced cardiovascular toxicity in patients treated for cancer of all antineoplastic agents were included except for anthracycline. Case reports, conference abstracts, reviews and non-patient studies were excluded. Data extracted by two independent reviewers were combined with random-effects model and reported according to PRISMA and MOOSE guidelines.

    RESULTS: The 35 studies included examined a total of 219 SNPs in 80 genes, 11 antineoplastic and 5 types of cardiovascular toxicities. Meta-analyses showed that human epidermal growth factor receptor 2 (HER2) rs1136201, a risk variants (pooled OR: 2.43; 1.17-5.06, p = 0.018) is a potential predictors for trastuzumab-related cardiotoxicity. Gene dose effect analysis showed number of variant allele may contribute to the risk too.

    CONCLUSIONS: This review found that HER2 rs1136201 can have the potential in predicting trastuzumab-related heart failure. As such, further studies are needed to confirm the validity of these results as well as determine the economic aspect of using SNPs prior to its implementation as a clinical practice.

  4. Chong HY, Lim YH, Prawjaeng J, Tassaneeyakul W, Mohamed Z, Chaiyakunapruk N
    Pharmacogenet Genomics, 2018 02;28(2):56-67.
    PMID: 29176400 DOI: 10.1097/FPC.0000000000000319
    OBJECTIVE: Studies found a strong association between allopurinol-induced Stevens-Johnson syndrome (SJS)/toxic epidermal necrolysis (TEN) and the HLA-B*58:01 allele. HLA-B*58:01 screening-guided therapy may mitigate the risk of allopurinol-induced SJS/TEN. This study aimed to evaluate the cost-effectiveness of HLA-B*58:01 screening before allopurinol therapy initiation compared with the current practice of no screening for Malaysian patients with chronic gout in whom a hypouricemic agent is indicated.

    METHODS: This cost-effectiveness analysis adopted a societal perspective with a lifetime horizon. A decision tree model coupled with Markov models were developed to estimate the costs and outcomes, represented by quality-adjusted life years (QALYs) gained, of three treatment strategies: (a) current practice (allopurinol initiation without HLA-B*58:01 screening); (b) HLA-B*58:01 screening before allopurinol initiation; and (c) alternative treatment (probenecid) without HLA-B*58:01 screening. The model was populated with data from literature review, meta-analysis, and published government documents. Cost values were adjusted for the year 2016, with costs and health outcomes discounted at 3% per annum. A series of sensitivity analysis including probabilistic sensitivity analysis were carried out to determine the robustness of the findings.

    RESULTS: Both HLA-B*58:01 screening and probenecid prescribing were dominated by current practice. Compared with current practice, HLA-B*58:01 screening resulted in 0.252 QALYs loss per patient at an additional cost of USD 322, whereas probenecid prescribing resulted in 1.928 QALYs loss per patient at an additional cost of USD 2203. One SJS/TEN case would be avoided for every 556 patients screened. At the cost-effectiveness threshold of USD 8695 per QALY, the probability of current practice being the best choice is 99.9%, in contrast with 0.1 and 0% in HLA-B*58:01 screening and probenecid prescribing, respectively. This is because of the low incidence of allopurinol-induced SJS/TEN in Malaysia and the lower efficacy of probenecid compared with allopurinol in gout control.

    CONCLUSION: This analysis showed that HLA-B*58:01 genetic testing before allopurinol initiation is unlikely to be a cost-effective intervention in Malaysia.
  5. Saksit N, Tassaneeyakul W, Nakkam N, Konyoung P, Khunarkornsiri U, Chumworathayi P, et al.
    Pharmacogenet Genomics, 2017 07;27(7):255-263.
    PMID: 28509689 DOI: 10.1097/FPC.0000000000000285
    BACKGROUND: Allopurinol is one of the most common causes of severe cutaneous adverse drug reactions (SCARs) including drug reactions with eosinophilia and systemic symptoms (DRESS), Stevens-Johnson syndrome (SJS), and toxic epidermal necrolysis (TEN). This study identified the risk factors associated with the development of allopurinol-induced SCARs in a Thai population.

    PATIENTS AND METHODS: Eighty-six allopurinol-induced SCARs (i.e. 19 DRESS and 67 SJS/TEN) and 182 allopurinol-tolerant patients were enrolled in the study. The HLA-B*58:01 allele was determined. Clinical and medicinal data were collected.

    RESULTS: Results from multivariate analysis showed that only the HLA-B*58:01 and female sex were identified as risk factors of allopurinol-induced SCARs in this Thai population. Patients who carried the HLA-B*58:01 allele were at a higher risk of allopurinol-induced DRESS [odds ratio (OR)=149.2, 95% confidence interval (CI)=24.0-∞, P<1.00×10]. Similar results were observed in allopurinol-induced SJS/TEN (OR=175.0, 95% CI=44.3-690.9, P=1.69×10). The risk of allopurinol-induced SCARs in women was higher than that in men (OR=4.6, 95% CI=1.4-15.6, P=1.44×10). The overall mortality rate of allopurinol-induced SCARs was 11.39% and a higher mortality rate was observed in elderly women.

    CONCLUSION: Among the risk factors identified, the HLA-B*58:01 allele had the greatest impact on the development of both phenotypes of allopurinol-induced SCARs in this studied Thai population. In case HLA-B*58:01 genotyping cannot be accessed, close monitoring of allopurinol usage, especially in elderly women with impaired renal function, is necessary to reduce the mortality rate of these life-threatening SCARs.

  6. Wang CW, Tassaneeyakul W, Chen CB, Chen WT, Teng YC, Huang CY, et al.
    J Allergy Clin Immunol, 2021 04;147(4):1402-1412.
    PMID: 32791162 DOI: 10.1016/j.jaci.2020.08.003
    BACKGROUND: Co-trimoxazole, a sulfonamide antibiotic, is used to treat a variety of infections worldwide, and it remains a common first-line medicine for prophylaxis against Pneumocystis jiroveci pneumonia. However, it can cause severe cutaneous adverse reaction (SCAR), including Stevens-Johnson syndrome, toxic epidermal necrolysis, and drug reaction with eosinophilia and systemic symptoms. The pathomechanism of co-trimoxazole-induced SCAR remains unclear.

    OBJECTIVE: We aimed to investigate the genetic predisposition of co-trimoxazole-induced SCAR.

    METHODS: We conducted a multicountry case-control association study that included 151 patients with of co-trimoxazole-induced SCAR and 4631 population controls from Taiwan, Thailand, and Malaysia, as well as 138 tolerant controls from Taiwan. Whole-genome sequencing was performed for the patients and population controls from Taiwan; it further validated the results from Thailand and Malaysia.

    RESULTS: The whole-genome sequencing study (43 case patients vs 507 controls) discovered that the single-nucleotide polymorphism rs41554616, which is located between the HLA-B and MICA loci, had the strongest association with co-trimoxazole-induced SCAR (P = 8.2 × 10-9; odds ratio [OR] = 7.7). There were weak associations of variants in co-trimoxazole-related metabolizing enzymes (CYP2D6, GSTP1, GCLC, N-acetyltransferase [NAT2], and CYP2C8). A replication study using HLA genotyping revealed that HLA-B∗13:01 was strongly associated with co-trimoxazole-induced SCAR (the combined sample comprised 91 case patients vs 2545 controls [P = 7.2 × 10-21; OR = 8.7]). A strong HLA association was also observed in the case patients from Thailand (P = 3.2 × 10-5; OR = 3.6) and Malaysia (P = .002; OR = 12.8), respectively. A meta-analysis and phenotype stratification study further indicated a strong association between HLA-B∗13:01 and co-trimoxazole-induced drug reaction with eosinophilia and systemic symptoms (P = 4.2 × 10-23; OR = 40.1).

    CONCLUSION: This study identified HLA-B∗13:01 as an important genetic factor associated with co-trimoxazole-induced SCAR in Asians.

  7. Wang YH, Chen CB, Tassaneeyakul W, Saito Y, Aihara M, Choon SE, et al.
    Clin. Pharmacol. Ther., 2019 01;105(1):112-120.
    PMID: 29569740 DOI: 10.1002/cpt.1071
    Specific ethnic genetic backgrounds are associated with the risk of Stevens-Johnson syndrome / toxic epidermal necrolysis (SJS/TEN) especially in Asians. However, there have been no large cohort, multiple-country epidemiological studies of medication risk related to SJS/TEN in Asian populations. Thus, we analyzed the registration databases from multiple Asian countries who were treated during 1998-2017. A total 1,028 SJS/TEN cases were identified with the algorithm of drug causality for epidermal necrolysis. Furthermore, those medications labeled by the US Food and Drug Administration (FDA) as carrying a risk of SJS/TEN were also compared with the common causes of SJS/TEN in Asian countries. Oxcarbazepine, sulfasalazine, COX-II inhibitors, and strontium ranelate were identified as new potential causes. In addition to sulfa drugs and beta-lactam antibiotics, quinolones were also a common cause. Only one acetaminophen-induced SJS was identified, while several medications (e.g., oseltamivir, terbinafine, isotretinoin, and sorafenib) labeled as carrying a risk of SJS/TEN by the FDA were not found to have caused any of the cases in the Asian countries investigated in this study.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links