METHODS: We proposed a new feature extraction method by replacing fully-connected layer with global average pooling (GAP) layer. A comparative analysis was conducted to compare the efficacy of 16 different convolutional neural network (CNN) feature extractors and three machine learning classifiers.
RESULTS: Experimental results revealed the potential of CNN feature extractors in conducting multitask diagnosis. Optimal model consisted of VGG16-GAP feature extractor and KNN classifier. This model not only outperformed the other tested models, it also outperformed the state-of-art methods with higher balanced accuracy, higher Cohen's kappa, higher F1, and lower mean squared error (MSE) in seven OA features prediction.
CONCLUSIONS: The proposed model demonstrates pain prediction on plain radiographs, as well as eight OA-related bony features. Future work should focus on exploring additional potential radiological manifestations of OA and their relation to therapeutic interventions.
METHODS: Articles published between 2010 and 2023 were searched from five electronic databases. 59 papers were included for analysis with regards to: i). types of motion tested (functional vs. purposeful ankle movement); ii) types of biomechanical parameters measured (kinetic vs kinematic); iii) types of sensor systems used (lab-based vs field-based); and, iv) AI techniques used.
FINDINGS: Most studies (83.1%) examined biomechanics during functional motion. Single kinematic parameter, specifically ankle range of motion, could obtain accuracy up to 100% in identifying injury status. Wearable sensor exhibited high reliability for use in both laboratory and on-field/clinical settings. AI algorithms primarily utilized electromyography and joint angle information as input data. Support vector machine was the most used supervised learning algorithm (18.64%), while artificial neural network demonstrated the highest accuracy in eight studies.
INTERPRETATIONS: The potential for remote patient monitoring is evident with the adoption of field-based devices. Nevertheless, AI-based sensors are underutilized in detecting ankle motions at risk of sprain. We identify three key challenges: sensor designs, the controllability of AI models, and the integration of AI-sensor models, providing valuable insights for future research.