Displaying all 8 publications

Abstract:
Sort:
  1. Ting CM, Salleh ShH, Zainuddin ZM, Bahar A
    IEEE Trans Biomed Eng, 2011 Feb;58(2):321-31.
    PMID: 21257361 DOI: 10.1109/TBME.2010.2088396
    This paper proposes non-Gaussian models for parametric spectral estimation with application to event-related desynchronization (ERD) estimation of nonstationary EEG. Existing approaches for time-varying spectral estimation use time-varying autoregressive (TVAR) state-space models with Gaussian state noise. The parameter estimation is solved by a conventional Kalman filtering. This study uses non-Gaussian state noise to model autoregressive (AR) parameter variation with estimation by a Monte Carlo particle filter (PF). Use of non-Gaussian noise such as heavy-tailed distribution is motivated by its ability to track abrupt and smooth AR parameter changes, which are inadequately modeled by Gaussian models. Thus, more accurate spectral estimates and better ERD tracking can be obtained. This study further proposes a non-Gaussian state space formulation of time-varying autoregressive moving average (TVARMA) models to improve the spectral estimation. Simulation on TVAR process with abrupt parameter variation shows superior tracking performance of non-Gaussian models. Evaluation on motor-imagery EEG data shows that the non-Gaussian models provide more accurate detection of abrupt changes in alpha rhythm ERD. Among the proposed non-Gaussian models, TVARMA shows better spectral representations while maintaining reasonable good ERD tracking performance.
  2. Ting CM, Samdin SB, Salleh ShH, Omar MH, Kamarulafizam I
    PMID: 23367426 DOI: 10.1109/EMBC.2012.6347491
    This paper applies an expectation-maximization (EM) based Kalman smoother (KS) approach for single-trial event-related potential (ERP) estimation. Existing studies assume a Markov diffusion process for the dynamics of ERP parameters which is recursively estimated by optimal filtering approaches such as Kalman filter (KF). However, these studies only consider estimation of ERP state parameters while the model parameters are pre-specified using manual tuning, which is time-consuming for practical usage besides giving suboptimal estimates. We extend the KF approach by adding EM based maximum likelihood estimation of the model parameters to obtain more accurate ERP estimates automatically. We also introduce different model variants by allowing flexibility in the covariance structure of model noises. Optimal model selection is performed based on Akaike Information Criterion (AIC). The method is applied to estimation of chirp-evoked auditory brainstem responses (ABRs) for detection of wave V critical for assessment of hearing loss. Results shows that use of more complex covariances are better estimating inter-trial variability.
  3. Ting CM, Seghouane AK, Khalid MU, Salleh ShH
    Neural Comput, 2015 Sep;27(9):1857-71.
    PMID: 26161816 DOI: 10.1162/NECO_a_00765
    We consider the problem of selecting the optimal orders of vector autoregressive (VAR) models for fMRI data. Many previous studies used model order of one and ignored that it may vary considerably across data sets depending on different data dimensions, subjects, tasks, and experimental designs. In addition, the classical information criteria (IC) used (e.g., the Akaike IC (AIC)) are biased and inappropriate for the high-dimensional fMRI data typically with a small sample size. We examine the mixed results on the optimal VAR orders for fMRI, especially the validity of the order-one hypothesis, by a comprehensive evaluation using different model selection criteria over three typical data types--a resting state, an event-related design, and a block design data set--with varying time series dimensions obtained from distinct functional brain networks. We use a more balanced criterion, Kullback's IC (KIC) based on Kullback's symmetric divergence combining two directed divergences. We also consider the bias-corrected versions (AICc and KICc) to improve VAR model selection in small samples. Simulation results show better small-sample selection performance of the proposed criteria over the classical ones. Both bias-corrected ICs provide more accurate and consistent model order choices than their biased counterparts, which suffer from overfitting, with KICc performing the best. Results on real data show that orders greater than one were selected by all criteria across all data sets for the small to moderate dimensions, particularly from small, specific networks such as the resting-state default mode network and the task-related motor networks, whereas low orders close to one but not necessarily one were chosen for the large dimensions of full-brain networks.
  4. Ombao H, Fiecas M, Ting CM, Low YF
    Neuroimage, 2018 Oct 15;180(Pt B):609-618.
    PMID: 29223740 DOI: 10.1016/j.neuroimage.2017.11.061
    Most neuroscience cognitive experiments involve repeated presentations of various stimuli across several minutes or a few hours. It has been observed that brain responses, even to the same stimulus, evolve over the course of the experiment. These changes in brain activation and connectivity are believed to be associated with learning and/or habituation. In this paper, we present two general approaches to modeling dynamic brain connectivity using electroencephalograms (EEGs) recorded across replicated trials in an experiment. The first approach is the Markovian regime-switching vector autoregressive model (MS-VAR) which treats EEGs as realizations of an underlying brain process that switches between different states both within a trial and across trials in the entire experiment. The second is the slowly evolutionary locally stationary process (SEv-LSP) which characterizes the observed EEGs as a mixture of oscillatory activities at various frequency bands. The SEv-LSP model captures the dynamic nature of the amplitudes of the band-oscillations and cross-correlations between them. The MS-VAR model is able to capture abrupt changes in the dynamics while the SEv-LSP directly gives interpretable results. Moreover, it is nonparametric and hence does not suffer from model misspecification. For both of these models, time-evolving connectivity metrics in the frequency domain are derived from the model parameters for both functional and effective connectivity. We illustrate these two models for estimating cross-trial connectivity in selective attention using EEG data from an oddball paradigm auditory experiment where the goal is to characterize the evolution of brain responses to target stimuli and to standard tones presented randomly throughout the entire experiment. The results suggest dynamic changes in connectivity patterns over trials with inter-subject variability.
  5. Izan NF, Salleh SH, Ting CM, Noman F, Sh-Hussain H, Poznanski RR, et al.
    J Integr Neurosci, 2020 Sep 30;19(3):479-487.
    PMID: 33070527 DOI: 10.31083/j.jin.2020.03.222
    The purpose is to estimate the effectiveness of electrocardiograms during resting and active participation by the differentiation between the electrical activity of the heart while standing and sitting in a resting state. The concern is to identify the electrocardiogram parameters that did not show significant changes within these positions. The electrocardiogram parameters can be considered to be a standard marker for medically compromised patients. The electrocardiogram is recorded in the standing and sitting positions focusing on healthy participants using standard electrode placement of lead-I. Combined lead-I patterns (camel-hump or ST-segment prolongation) are usually seen in neurologic injury or hypothermia patients. The pairwise comparisons of a year data are about 454,400 cycles of sitting and 493,470 cycles of standing data. Thus, it is essential to quantify the nature and magnitude of changes seen in the electrocardiogram with a change of posture from sitting to standing in a healthy individual. This makes the findings of electrocardiogram analysis in this paper interesting in which some parameters (i.e., camel-hump patterns in lead-I) are helpful for clinical interpretations and could be suggestive of neurologic injury.
  6. Huang SG, Samdin SB, Ting CM, Ombao H, Chung MK
    J Neurosci Methods, 2020 02 01;331:108480.
    PMID: 31760059 DOI: 10.1016/j.jneumeth.2019.108480
    BACKGROUND: Recent studies have indicated that functional connectivity is dynamic even during rest. A common approach to modeling the dynamic functional connectivity in whole-brain resting-state fMRI is to compute the correlation between anatomical regions via sliding time windows. However, the direct use of the sample correlation matrices is not reliable due to the image acquisition and processing noises in resting-sate fMRI.

    NEW METHOD: To overcome these limitations, we propose a new statistical model that smooths out the noise by exploiting the geometric structure of correlation matrices. The dynamic correlation matrix is modeled as a linear combination of symmetric positive-definite matrices combined with cosine series representation. The resulting smoothed dynamic correlation matrices are clustered into disjoint brain connectivity states using the k-means clustering algorithm.

    RESULTS: The proposed model preserves the geometric structure of underlying physiological dynamic correlation, eliminates unwanted noise in connectivity and obtains more accurate state spaces. The difference in the estimated dynamic connectivity states between males and females is identified.

    COMPARISON WITH EXISTING METHODS: We demonstrate that the proposed statistical model has less rapid state changes caused by noise and improves the accuracy in identifying and discriminating different states.

    CONCLUSIONS: We propose a new regression model on dynamically changing correlation matrices that provides better performance over existing windowed correlation and is more reliable for the modeling of dynamic connectivity.

  7. Salleh SH, Hussain HS, Swee TT, Ting CM, Noor AM, Pipatsart S, et al.
    Int J Nanomedicine, 2012;7:2873-81.
    PMID: 22745550 DOI: 10.2147/IJN.S32315
    Auscultation of the heart is accompanied by both electrical activity and sound. Heart auscultation provides clues to diagnose many cardiac abnormalities. Unfortunately, detection of relevant symptoms and diagnosis based on heart sound through a stethoscope is difficult. The reason GPs find this difficult is that the heart sounds are of short duration and separated from one another by less than 30 ms. In addition, the cost of false positives constitutes wasted time and emotional anxiety for both patient and GP. Many heart diseases cause changes in heart sound, waveform, and additional murmurs before other signs and symptoms appear. Heart-sound auscultation is the primary test conducted by GPs. These sounds are generated primarily by turbulent flow of blood in the heart. Analysis of heart sounds requires a quiet environment with minimum ambient noise. In order to address such issues, the technique of denoising and estimating the biomedical heart signal is proposed in this investigation. Normally, the performance of the filter naturally depends on prior information related to the statistical properties of the signal and the background noise. This paper proposes Kalman filtering for denoising statistical heart sound. The cycles of heart sounds are certain to follow first-order Gauss-Markov process. These cycles are observed with additional noise for the given measurement. The model is formulated into state-space form to enable use of a Kalman filter to estimate the clean cycles of heart sounds. The estimates obtained by Kalman filtering are optimal in mean squared sense.
  8. Chow XH, Ting CM, Wan Hamizan AK, Zahedi FD, Tan HJ, Remli R, et al.
    J Laryngol Otol, 2024 Mar;138(3):301-309.
    PMID: 37259908 DOI: 10.1017/S0022215123000919
    OBJECTIVE: The aim of this study was to identify the potential electrophysiological biomarkers of human responses by comparing the electroencephalogram brain wave changes towards lavender versus normal saline in a healthy human population.

    METHOD: This study included a total of 44 participants without subjective olfactory disturbances. Lavender and normal saline were used as the olfactory stimulant and control. Electroencephalogram was recorded and power spectra were analysed by the spectral analysis for each alpha, beta, delta, theta and gamma bandwidth frequency upon exposure to lavender and normal saline independently.

    RESULTS: The oscillatory brain activities in response to the olfactory stimulant indicated that the lavender smell decreased the beta activity in the left frontal (F7 electrode) and central region (C3 electrode) with a reduction in the gamma activity in the right parietal region (P4 electrode) (p < 0.05).

    CONCLUSION: Olfactory stimulants result in changes of electrical brain activities in different brain regions, as evidenced by the topographical brain map and spectra analysis of each brain wave.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links