Displaying all 2 publications

Abstract:
Sort:
  1. Hai PM, Tinh PH, Son NP, Thuy TV, Hong Hanh NT, Sharma S, et al.
    PLoS One, 2022;17(12):e0275928.
    PMID: 36472976 DOI: 10.1371/journal.pone.0275928
    Mangrove forest plays a very important role for both ecosystem services and biodiversity conservation. In Vietnam, mangrove is mainly distributed in the Mekong delta. Recently, mangrove areas in this region decreased rapidly in both quality and quantity. The forest became bare, divided and scattered into many small patches, which was a major driver of ecosystem degradation. Without a quantitative method for effectively assessing mangrove health in the regional scale, the sustainably conserving mangrove is the challenge for the local governments. Remote sensing data has been widely used for monitoring mangrove distributions, while the characterization of spatial metrics is important to understand the underlying processes of mangrove change. The objectives of this study were to develop an approach to monitor mangrove health in Mui Ca Mau, Ca Mau province of Vietnam by utilizing satellite image textures to assess the mangrove patterns. The research result showed that mangrove areas increased double by 2015, but the forest had become more fragmented. We can be seen those changes in land use mainly come from land conversion from forest to shrimp farms, settlements areas and public constructions. The conserving existing mangrove forest in Mui Ca Mau should consider the relations between mangrove health and influencing factors indicated in the manuscript.
  2. Bourgeois CF, MacKenzie RA, Sharma S, Bhomia RK, Johnson NG, Rovai AS, et al.
    Sci Adv, 2024 Jul 05;10(27):eadk5430.
    PMID: 38968357 DOI: 10.1126/sciadv.adk5430
    Mangroves' ability to store carbon (C) has long been recognized, but little is known about whether planted mangroves can store C as efficiently as naturally established (i.e., intact) stands and in which time frame. Through Bayesian logistic models compiled from 40 years of data and built from 684 planted mangrove stands worldwide, we found that biomass C stock culminated at 71 to 73% to that of intact stands ~20 years after planting. Furthermore, prioritizing mixed-species planting including Rhizophora spp. would maximize C accumulation within the biomass compared to monospecific planting. Despite a 25% increase in the first 5 years following planting, no notable change was observed in the soil C stocks thereafter, which remains at a constant value of 75% to that of intact soil C stock, suggesting that planting effectively prevents further C losses due to land use change. These results have strong implications for mangrove restoration planning and serve as a baseline for future C buildup assessments.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links