Unless better measures are put in place to address the environmental and social impacts emanating from the huge waste generated from sea food processing industries; 'tragedy of the commons' is inevitable. Needless to re-emphasise the enormous contributions of aquaculture as the perfect substitute to capture fisheries which has been proven unsustainable. Be that as it may, the huge amount of bio-waste produced could be transformed into useful products such as chitin and chitosan with far reaching applications. Chitin and chitosan have been consistently processed from many sources following the traditional chemical sequence of Demineralization (DM), Deproteinization (DP), Decolouration (DC) and Deacetylation (DA). In this study, this method was re-ordered, resulting to 4 sequences of chemical processes. HCl, NaOH, ethanol (97%) and NaOH (50%) were used for DM, DP, DC and DA respectively. The results of this study showed that better chitin (23.99 ± 0.61%) and chitosan (15.17 ± 1.69%) yields were obtained from sequence four (SQ4) following the order of DC-DM-DP-DA. In addition, physicochemical properties such as DDA (80.67 ± 2.52%) and solubility (66.43 ± 2.61%) were significantly higher (p ≤ 0.05) in SQ4 thereby making the obtained product suitable for use as coagulant and flocculant in wastewater treatment. Results of FTIR, XRD and SEM of the study proved that the resultant product exhibited the characteristic nature of chitosan with porous and fibril nature. In the analysis of the physical properties of chitosan obtained from bio-waste of Macrobrachium rosenbergii, the high Carr's index (CI) and low bulk as well as tapped densities were an indication that the chitosan produced in this study had poor flowability and compressibility, thereby making it unfit for application in pharmaceutical industries.
Pangasius catfish, a significant player in the global whitefish market, encounters challenges in aquaculture production sustainability. Quality broodstock maintenance and seed production are impeded by growth, maturation, and fecundity issues. This review investigates the efficacy of strategic nutrient composition and molecular strategies in enhancing broodstock conditions and reproductive performance across various fish species. A notable knowledge gap for Pangasius catfish hampers aquaculture progress. The review assesses nutrient manipulation's impact on reproductive physiology, emphasizing pangasius broodstock. A systematic review analysis following PRISMA guidelines was conducted to identify research trends and hotspots quantitatively, revealing a focus on P. bocourti and fertilization techniques. Addressing this gap, the review offers insights into dietary nutrients manipulation and genetic tool utilization for improved seed production, contributing to pangasius catfish aquaculture sustainability.
Dietary lipid manipulation in the feed of commercially cultured finfish is used not only to improve production and culture but also to enhance their reproductive performances. The inclusion of lipid in broodstock diet positively affects growth, immunological responses, gonadogenesis, and larval survival. In this review, existing literature on the importance of freshwater finfish species to aquaculture and the inclusion of dietary lipid compounds in freshwater fish feed to accelerate the reproduction rate is being summarized and discussed. Although lipid compounds have been confirmed to improve reproductive performance, only a few members of the most economically important species have reaped benefits from quantitative and qualitative lipid studies. There is a knowledge gap on the effective inclusion and utilization of dietary lipids on gonad maturation, fecundity, fertilization, egg morphology, hatching rate, and consequently, larval quality contributing to the survival and good performance of freshwater fish culture. This review provides a baseline for potential future research for optimizing dietary lipid inclusion in freshwater broodstock diets.
This study aims to elucidate the evolution of catfish research publications over recent decades, identify emerging research clusters, examine keyword patterns, determine major contributors (including authors, organizations, and funding agencies), and analyze their collaborative networks and citation bursts on a global scale. The USA, Brazil, China, and India collectively contribute approximately 67% of the total catfish research publications, with a marked increase in prevalence since 2016. The most frequently occurring and dominant keywords are "channel catfish" and "responses," respectively. Intriguingly, our findings reveal 28 distinct article clusters, with prominent clusters including "yellow catfish," "channel catfish", "pectoral girdle," "African catfish", "Rio Sao Francisco basin," "Edwardsiella ictaluri," and "temperature mediated". Concurrently, keyword clustering generates seven main clusters: "new species", "growth performance", "heavy metal", "gonadotropin-releasing", "essential oil", and "olfactory receptor". This study further anticipates future research directions, offering fresh perspectives on the catfish literature landscape. To the best of our knowledge, this is the first article to conduct a comprehensive mapping review of catfish research publications worldwide.