Six facultatively anaerobic, non-motile lactic acid bacteria were isolated from spontaneous cocoa bean fermentations carried out in Brazil, Ecuador and Malaysia. Phylogenetic analysis revealed that one of these strains, designated M75(T), isolated from a Brazilian cocoa bean fermentation, had the highest 16S rRNA gene sequence similarity towards Weissella fabaria LMG 24289(T) (97.7%), W. ghanensis LMG 24286(T) (93.3%) and W. beninensis LMG 25373(T) (93.4%). The remaining lactic acid bacteria isolates, represented by strain M622, showed the highest 16S rRNA gene sequence similarity towards the type strain of Fructobacillus tropaeoli (99.9%), a recently described species isolated from a flower in South Africa. pheS gene sequence analysis indicated that the former strain represented a novel species, whereas pheS, rpoA and atpA gene sequence analysis indicated that the remaining five strains belonged to F. tropaeoli; these results were confirmed by DNA-DNA hybridization experiments towards their respective nearest phylogenetic neighbours. Additionally, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry proved successful for the identification of species of the genera Weissella and Fructobacillus and for the recognition of the novel species. We propose to classify strain M75(T) ( = LMG 26217(T) = CCUG 61472(T)) as the type strain of the novel species Weissella fabalis sp. nov.
A Gram-negative, aerobic, polar-flagellated and rod-shaped, sometimes slightly curved bacterium, designated MA5T, was isolated from the gut of an abalone of the species Haliotis gigantea collected in Japan. Phylogenetic analyses based on 16S rRNA, gyrB, hsp60 and rpoB gene sequences placed strain MA5T in the genus Arcobacter in an independent phylogenetic line. Comparison of the 16S rRNA gene sequence of this strain with those of the type strains of the established Arcobacter species revealed A. nitrofigilis (95.1 %) as nearest neighbour. Strain MA5T grew optimally at 25 °C, pH 6.0 to 9.0 and in the presence of 2 to 5 % (w/v) NaCl under both aerobic and microaerobic conditions. The predominant fatty acids found were summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1 ω7c), C12 : 0 3-OH and C18 : 1 ω7c. Menaquinone-6 (MK-6) and menaquinone-7 (MK-7) were found as the major respiratory quinones. The major polar lipids detected were phosphatidylethanolamine and phosphatidylglycerol. Strain MA5T could be differentiated phenotypically from the phylogenetic closest Arcobacter species by its ability to grow on 0.05 % safranin and 0.01 % 2,3,5-triphenyl tetrazolium chloride (TTC), but not on 0.5 % NaCl. The obtained DNA G+C content of strain MA5T was 27.9 mol%. Based on the phylogenetic, chemotaxonomic and phenotypic distinctiveness of MA5T, this strain is considered to represent a novel species of the genus Arcobacter, for which the name Arcobacter haliotis sp. nov. is proposed. The type strain is MA5T (=LMG 28652T=JCM 31147T).
A taxonomic study was conducted to clarify the relationships of two bacterial populations belonging to the genus Weissella. A total of 39 strains originating mainly from Malaysian foods (22 strains) and clinical samples from humans (9 strains) and animals (6 strains) were analysed using a polyphasic taxonomic approach. The methods included classical phenotyping, whole-cell protein electrophoresis, 16S and 23S rDNA RFLP (ribotyping), determination of 16S rDNA sequence homologies and DNA-DNA reassociation levels. Based on the results, the strains were considered to represent two different species, Weissella confusa and a novel Weissella species, for which the name Weissella cibaria sp. nov. is proposed. Weisella confusa possessed the highest 16S rDNA sequence similarity to Weisella cibaria, but the DNA-DNA reassociation experiment showed hybridization levels below 49% between the strains studied. The numerical analyses of Weisella confusa and Weisella cibaria strains did not reveal any specific clustering with respect to the origin of the strains. Based on whole-cell protein electrophoresis, and ClaI and HindIII ribotyping patterns, food and clinical isolates were randomly located in the two species-specific clusters obtained.
Four brown-alga-degrading, Gram-stain-negative, aerobic, non-flagellated, gliding and rod-shaped bacteria, designated LMG 28520T, LMG 28521, LMG 28522 and LMG 28523, were isolated from the gut of the abalone Haliotis gigantea obtained in Japan. The four isolates had identical random amplified polymorphic DNA patterns and grew optimally at 25 °C, at pH 6.0-9.0 and in the presence of 1.0-4.0 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences placed the isolates in the genus Formosa with Formosa algae and Formosa arctica as closest neighbours. LMG 28520T and LMG 28522 showed 100 % DNA-DNA relatedness to each other, 16-17 % towards F. algae LMG 28216T and 17-20 % towards F. arctica LMG 28318T; they could be differentiated phenotypically from these established species. The predominant fatty acids of isolates LMG 28520T and LMG 28522 were summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c), iso-C15 : 1 G and iso-C15 : 0. Isolate LMG 28520T contained menaquinone-6 (MK-6) as the major respiratory quinone and phosphatidylethanolamine, two unknown aminolipids and an unknown lipid as the major polar lipids. The DNA G+C content was 34.4 mol% for LMG 28520T and 35.5 mol% for LMG 28522. On the basis of their phylogenetic and genetic distinctiveness, and differential phenotypic properties, the four isolates are considered to represent a novel species of the genus Formosa, for which the name Formosa haliotis sp. nov. is proposed. The type strain is LMG 28520T ( = NBRC 111189T).
This study was aimed to identify and optimize the culture conditions for gamma-aminobutyric acid (GABA) production by a lactic acid bacterium strain isolated from mam nem, a fermented fish sauce. Among the six isolates obtained from mam nem, the MN12 had the most potent GABA-producing capability. The strain was then identified to be Pedioccocus pentosaceus by employing MALDI-TOF-MS and phenylalanyl-tRNA synthase sequencing methods. The initial cell density of 5.106 CFU/mL, monosodium glutamate concentration of 60 mM, initial pH of 7, temperature of 45°C and cultivation time of 72 h were found to be the optimal culture conditions for highest production of GABA, reaching 27.9 ± 0.42 mM, by this strain. The cultivation conditions for GABA production by P. pentosaceus MN12 have been successfully optimized, providing a foundation for the development of fermented foods enriched with GABA.