Displaying all 3 publications

Abstract:
Sort:
  1. 'Aqilah NMN, Rovina K, Felicia WXL, Vonnie JM
    Molecules, 2023 Mar 14;28(6).
    PMID: 36985603 DOI: 10.3390/molecules28062631
    The food production industry is a significant contributor to the generation of millions of tonnes of waste every day. With the increasing public concern about waste production, utilizing the waste generated from popular fruits and vegetables, which are rich in high-added-value compounds, has become a focal point. By efficiently utilizing food waste, such as waste from the fruit and vegetable industries, we can adopt a sustainable consumption and production pattern that aligns with the Sustainable Development Goals (SDGs). This paper provides an overview of the high-added-value compounds derived from fruit and vegetable waste and their sources. The inclusion of bioactive compounds with antioxidant, antimicrobial, and antibrowning properties can enhance the quality of materials due to the high phenolic content present in them. Waste materials such as peels, seeds, kernels, and pomace are also actively employed as adsorbents, natural colorants, indicators, and enzymes in the food industry. Therefore, this article compiles all consumer-applicable uses of fruit and vegetable waste into a single document.
  2. Lam ILJ, Mohd Affandy MA, 'Aqilah NMN, Vonnie JM, Felicia WXL, Rovina K
    Polymers (Basel), 2023 May 16;15(10).
    PMID: 37242902 DOI: 10.3390/polym15102328
    The main goal of this investigation is to conduct a thorough analysis of the physical, chemical, and morphological characteristics of chitosan derived from various forest fungi. Additionally, the study aims to determine the effectiveness of this vegetal chitosan as an antimicrobial agent. In this study, Auricularia auricula-judae, Hericium erinaceus, Pleurotus ostreatus, Tremella fuciformis, and Lentinula edodes were examined. The fungi samples were subjected to a series of rigorous chemical extraction procedures, including demineralization, deproteinization, discoloration, and deacetylation. Subsequently, the chitosan samples were subjected to a comprehensive physicochemical characterization analysis, encompassing Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), degree of deacetylation determination, ash content determination, moisture content determination, and solubility determination. To evaluate the antimicrobial efficacy of the vegetal chitosan samples, two different sampling parameters were employed, namely human hand and banana, to assess their effectiveness in inhibiting microbial growth. Notably, the percentage of chitin and chitosan varied significantly among the distinct fungal species examined. Moreover, EDX spectroscopy confirmed the extraction of chitosan from H. erinaceus, L. edodes, P. ostreatus, and T. fuciformis. The FTIR spectra of all samples revealed a similar absorbance pattern, albeit with varying peak intensities. Furthermore, the XRD patterns for each sample were nearly identical, with the exception of the A. auricula-judae sample, which exhibited sharp peaks at ~37° and ~51°, while the crystallinity index of this same sample was approximately 17% lower than the others. The moisture content results indicated that the L. edodes sample was the least stable, while the P. ostreatus sample was the most stable, in terms of degradation rate. Similarly, the solubility of the samples showed substantial variation among each species, with the H. erinaceus sample displaying the highest solubility among the rest. Lastly, the antimicrobial activity of the chitosan solutions exhibited different efficacies in inhibiting microbial growth of skin microflora and microbes found on the peel of Musa acuminata × balbisiana.
  3. Iversen LJL, Rovina K, Vonnie JM, Matanjun P, Erna KH, 'Aqilah NMN, et al.
    Molecules, 2022 Aug 31;27(17).
    PMID: 36080371 DOI: 10.3390/molecules27175604
    Food packaging was not as important in the past as it is now, because the world has more people but fewer food resources. Food packaging will become more prevalent and go from being a nice-to-have to an essential feature of modern life. Food packaging has grown to be an important industry sector in today's world of more people and more food. Food packaging innovation faces significant challenges in extending perishable food products' shelf life and contributing to meeting daily nutrient requirements as people nowadays are searching for foods that offer additional health advantages. Modern food preservation techniques have two objectives: process viability and safe, environmentally friendly end products. Long-term storage techniques can include the use of edible coatings and films. This article gives a succinct overview of the supplies and procedures used to coat food products with conventional packaging films and coatings. The key findings summarizing the biodegradable packaging materials are emphasized for their ability to prolong the freshness and flavor of a wide range of food items; films and edible coatings are highlighted as viable alternatives to traditional packaging methods. We discuss the safety concerns and opportunities presented by applying edible films and coatings, allowing it to be used as quality indicators for time-sensitive foods.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links