METHODS: This was a two-centre randomised controlled trial of CI versus IB dosing of beta-lactam antibiotics, which enrolled critically ill participants with severe sepsis who were not on renal replacement therapy (RRT). The primary outcome was clinical cure at 14 days after antibiotic cessation. Secondary outcomes were PK/PD target attainment, ICU-free days and ventilator-free days at day 28 post-randomisation, 14- and 30-day survival, and time to white cell count normalisation.
RESULTS: A total of 140 participants were enrolled with 70 participants each allocated to CI and IB dosing. CI participants had higher clinical cure rates (56 versus 34 %, p = 0.011) and higher median ventilator-free days (22 versus 14 days, p MIC than the IB arm on day 1 (97 versus 70 %, p
METHODS: We performed a prospective, observational, multinational, pharmacokinetic study in 29 intensive care units from 14 countries. We collected demographic, clinical, and RRT data. We measured trough antibiotic concentrations of meropenem, piperacillin-tazobactam, and vancomycin and related them to high- and low-target trough concentrations.
RESULTS: We studied 381 patients and obtained 508 trough antibiotic concentrations. There was wide variability (4-8-fold) in antibiotic dosing regimens, RRT prescription, and estimated endogenous renal function. The overall median estimated total renal clearance (eTRCL) was 50 mL/minute (interquartile range [IQR], 35-65) and higher eTRCL was associated with lower trough concentrations for all antibiotics (P < .05). The median (IQR) trough concentration for meropenem was 12.1 mg/L (7.9-18.8), piperacillin was 78.6 mg/L (49.5-127.3), tazobactam was 9.5 mg/L (6.3-14.2), and vancomycin was 14.3 mg/L (11.6-21.8). Trough concentrations failed to meet optimal higher limits in 26%, 36%, and 72% and optimal lower limits in 4%, 4%, and 55% of patients for meropenem, piperacillin, and vancomycin, respectively.
CONCLUSIONS: In critically ill patients treated with RRT, antibiotic dosing regimens, RRT prescription, and eTRCL varied markedly and resulted in highly variable antibiotic concentrations that failed to meet therapeutic targets in many patients.